
1. Introduction
Shock Hugoniot data have been published for various

high energetic materials.１） They, however, have larger
scatter compared with those for inert materials. Reason of
this scatter may be attributed to partial reaction and/or
decomposition of energetic material under high dynamic
pressures and temperatures. Olinger et al２）have published
static isothermal compression data for PETN, and they
have calculated shock Hugoniot curve thermodynamically.
Static high pressure compression of high energetic
material may have less probability of reaction or
decomposition with no additional heating during
compression process. In this sense, further data by static
compression have been published not only for PETN２），３）
but other energetic materials.４），５）Although high pressure
may have the possibility of causing structural phase
transition of the material.

Olinger et al’s thermodynamic procedure of
transforming isothermal data to shock Hugoniot requires
value of the specific heat at constant volume and the
Grüneisen parameter. Since the compression behavior of
both the specific heat and the Grüneisen parameter for
high energetic materials are unknown, they had two
assumptions. That is, (i) the specific heat at constant
volume keeps constant value through isothermal
compression and (ii) the Grüneisen parameter divided by
specific volume is constant.
Both assumptions are commonly used assumptions in

case their experimental values are not available. A treatise
in this direction has been published by Sheffield et al.６）In
this paper, a new thermodynamic formulation of
transformation from isothermal to shock compression has
been developed. We did not assume the assumption (ii),
while we also have adopted the assumption (i). By these
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analyses, we would like to discuss the contribution of the
functional form of the Grüneisen parameter to the
estimated shock Hugoniot curve. Numerical examples of
Hugoniot curve for PETN have been given and the
contribution of the Grüneisen parameter has been
discussed.
Researches conducted in this paper has been made to

obtain equation of state (EOS) to implement to the
numerical code for the detonation phenomena simulation.

2. Thermodynamics of isothermal compression
curve and shock Hugoniot curve for
energetic materials

2.1 Grüneisen type equation of state
At first, we assume that the EOS for reactants can be

described by the Grüneisen type equation of state.７），８）

�������
����

�
�, (1)

where �, �, �, and �denote the pressure, the specific
volume, the Grüneisen parameter and the specific internal
energy, respectively. In this equation, the Grüneisen
parameter is assumed to be a function only of volume.
Nagayama７） has derived two new thermal variables,

���� and ���� based on the volume-dependent
Grüneisen parameter. In this case, thermal internal energy
can be written as

�����������������, (2)

where the volume function����is given by

����������������������� ��� � (3)

where suffix 0 denotes the value at a reference state, such
as the initial state. Entropic functions����and����are
found to be conjugate with each other as two new thermal
variables. This is demonstrated by the following equation,
which shows that these new thermal variables are related
to temperature and entropy as

��������������� (4)

We call the volume function ����the characteristic
temperature because it serves as the integrating
denominator in Equation (4), and corresponds to the
Debye temperature if one assumes the Debye model for
specific heat. Differentiation of specific internal energy,
Equation (2) with specific volume along an isentrope gives
the pressure.
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where suffix�denotes cold component of pressure. These
considerations have been published elsewhere.８）
A thermodynamic identity including temperature,

entropy and the Grüneisen parameter gives further
constraint on the relationship between the Grüneisen
parameter and other variables.
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or by using the definition of characteristic temperature, i.
e., Equation (3), Equation (6) is given in another form
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Since lhs of Equation (7) is a total differential, the
assumption of the Grüneisen parameter being a function
only of volume, leads to the result that specific heat at
constant volume should be a function only of entropy.
Debye model for the specific heat with one Debye
temperature, for example, is compatible with this rule. Or
at least one may say mathematically that arbitrary volume
functions of the Grüneisen parameter and arbitrary
entropy function of the specific heat is compatible with
each other.

2.2 Fundamental equations for deriving shock
Hugoniot curve based on isothermal
compression data

Interconnection between shock Hugoniot pressure and
isothermal pressure with the same specific volume is
given by
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where suffices H and t denote quantities on Hugoniot and
on an isotherm. Differential of Equation (8) is written as
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Differentiation of the Rankine-Hugoniot relation gives
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While the change in internal energy along an isothermal
compression curve can be
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Applying Equation (10) and (11) to Equation (9) gives
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Rearranging terms of Equation (12), we obtain
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By giving the isothermal compression curve data,
�
������, the specific heat, ��, and the Grüneisen function,
����, Equation (13) can be integrated over volume to
obtain shock Hugoniot pressure. It is apparent that
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Equation (13) is considered to be equivalent to Equation
(17) in Olinger et al’s paper in 1975.2）By adopting Equation
(13) instead of Olinger et al’s formula, one may at least
choose physical model for the specific heat other than
using the constant �� model. It is also noted that the
Grüneisen function other than ��������model can be
used both Equation (13) and Olinger formula.

3. Equation of state for unreacted energetic
material based on the isothermal
compression data
Figure 1 shows the schematic illustration of an isotherm,

an isentrope and shock Hugoniot on ���plane. Isotherm
and isentrope are the one centering uncompressed initial
state. Starting from the isothermal compression curve, we
will estimate both the state variables on the isentrope and
those on shock Hugoniot based on the specific heat
constant model. More specifically, we can establish the
relationship between isothermal pressure, isentropic
pressure and Hugoniot pressure with the same specific
volume as shown by three dot points in Figure 1.
Shock pressure �� has to be determined by the

integration of Equation (13) based on the information on
the isothermal compression curve, ��������. Thermal
variables on shock Hugoniot states can be obtained
relatively easy, provided that ��������. Pressure
difference between Hugoniot pressure and isothermal
pressure with the same specific volume can be estimated
by the formula

���
����

�
����with���� (14)

Integrating Equation (14) between the state on an
isotherm to the state on the Hugoniot along an isochoric,
we have

������
����

�
�� ������ � (15)

As shown later, this equation can be used to determine
shock temperature.

4. Test functions of the Grüneisen parameter
Almost all of the analyses above is based on the

information on the volume-dependent Grüneisen
parameter. Previous attempts on the studies of shock
Huginot have been made by using the assumption that
������������������. Since no serious evidences have
been found whether this assumption is valid or not, we
have tried to use several test functions in order to see its
contribution to the calculated shock Hugoniot from known
isotherm. We have used following five Grüneisen
functions, i.e.,

(i) �������������, (16)

(ii) ������� �
��
� �, (17)

(iii) ��������� �	�
, (18)

(iv) ������� �
��
� � �� 	�

�
��

� ��	� �, (19)

(v) ������� �
��
� ��. (20)

Rate of decrease in �with compression is larger for lower
row of these functions. We have added one specific
function, Equation (19) by the following reason. First two
functions have been well used previously. Third and fifth
functions have also been used by high-pressure scientists
to provide possibilities of faster decrease in Grüneisen
parameter by compression. Value of the fourth Grüneisen
parameter calculated by Equation (19) is found to be the
possible minimum value due to the following reason. One
of fundamental features of shock wave propagation is

���	��	
 (21)

where��,	
and	�denote the local sound velocity behind
the shock front, the shock front propagation velocity and
the particle velocity, respectively. Equation (21) means
that shock velocity is subsonic behind shock front.９）Along
shock Hugoniot, both shock velocity and particle velocity
increases with shock strength, and Equation (21) shows
that sound velocity will also increase. Most of the shock
Hugoniot has the density limit, and with increasing shock
strength, shock and particle velocity increases without
limit. This is due to extreme high temperature attained by
shock compression. In this sense, similar increase in sound
velocity with higher temperature will be explained by the
positive contribution of the thermal component of sound
velocity. This condition for the Grüneisen EOS leads to the
conclusion that Grüneisen parameter must have the
possible maximum value for each specific volume.
Concrete functional form for this limiting value is given by
Equation (19). At some interval of specific volume, value of
the Grüneisen parameter of case (v) is smaller than that of
case (iv). We must say that in such volume interval, case
(v) is unphysical. We still add the case (v) only for
comparison.
Characteristic temperature function defined by

Equation (3) for five test functions has been given as

Figure１ Isotherm, Isentrope and Hugoniot on ��� plane.
Three Pressure values, ��, �
 and �� are with the
same specific volume�.
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(iv) ������������� ���
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(v) ����������������
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�
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Equations (22)-(26) can be used to establish isentrope and
shock Hugoniot functions for energetic materials.
Figures 2 and 3 shows representations of the Grüneisen

functions assumed and their corresponding characteristic
temperature functions. As shown in Figure 2, decrease in
Grüneisen parameter with compression will increase with
the order as in Equation (16)-(20). Increase in the
corresponding characteristic temperature with
compression will decrease with the same order of
Equation (22)-(26). Grüneisen function given by Equation
(26) gives lower value compared with the lowest possible
value by Equation (25). This function is chosen to
represent only for comparison with other functions.

5. Calculations for PETN shock Hugoniot
5.1 Pressure-volume shock Hugoniot and

Grüneisen equation of state for PETN
Two data sets for TMD PETN isothermal compression

data have been available by Olinger et al２）and by Yoo et
al.３）Figure 4 shows these two kinds of data. Due to some
scatter of the data, least square fit by a polynomial
expression is also plotted in this figure. The polynomial

expression determined is given by
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A solid line in Figure 4 shows this polynomial, and it is
extended to the pressure region over the data area.
Sometimes, isothermal compression curves are fit by the
Murnaghan10）or Birch-Murnaghan11）equation of state. In
such cases, bulk modulus or derivative of bulk modulus is
estimated as parameters of these equation of state.
We have calculated shock Hugoniot and an isentrope

centering uncompressed state based on these two data
sets by integrating Equation (13) using polynomial
formula, Equation (27) for isothermal compression.

Figure３ Characteristic temperature function corresponding
to the assumed Grüneisen parameter in Figure 2.

Figure２ Assumed Grüneisen parameter as a function of
specific volume.

Figure４ Isothermal compression data of Olinger et al２）(solid
circles) and Yoo et al３）(open circles) and its least
square fit.
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According to Equation (13), one also needs the volume
derivative of Equation (27). The expression of derivative is
calculated directly from Equation (27). Estimated shock
Hugoniot compression curve depends on the assumed
Grüneisen functions, and is depicted in Figure 5. The
figure also contains Hugoniot points calculated by
published Hugoniot data.１） The most large difference
between isothermal compression curve and shock
Hugoniot is seen in the case of �������, i.e., Equation (16).
The difference is seen to decrease with cited order as in
Equation (16)-(20). This difference naturally is attributed to
the thermal pressure added through irreversible heating
by shock compression.
From Figure 5, one may see that (i) ����������gives

highest shock pressure with the same specific volume.
Difference in pressure between the cases, (iii), (iv) and (v)
is found to be very small.
It is possible to calculate shock velocity-particle velocity

Hugoniot from calculated pressure-volume Hugoniot. Bulk
sound velocity at uncompressed state can be calculated as
follows : One may first calculate the difference in
isentropic pressure and an isotherm along an isochoric in
Equation (14) as
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The last expression has been reached by using the
formula
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������������ ��� � (29)

which is obtained by integrating Equation (7) with ����.
By differentiating Equation (28) by volume, we have
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From this equation, estimated bulk sound velocity at the
initial state is given by
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which gives the velocity of 2.313 km·s－１ irrespective of
Grüneisen functions.
Estimated�����Hugoniot for each Grüneisen function

is shown in Figure 6.
In this figure, published shock Hugoniot data１） for

crystalline PETN of initial density of 1.773-1.778g·cm－３ are
also shown. Data are seen to be scattered around present
calculations. One may see from this figure that
dependence of �����Hugoniot on the functional form of
the Grüneisen parameter is quite small compared with
that in ������� Hugoniot. In other words, it is very
difficult to obtain information on the Grüneisen parameter
by the measurement of the Hugoniot data. One may note,
however, that our calculation does not include the rigidity
effects, so that�����Hugoniot will change slightly. Even
so, insensitivity of �����Hugoniot to the functional form
of the Grüneisen parameter remains valid, if one includes
rigidity effects.
We will rewrite Equation (1) to the following form.
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where the material function
���can be rewritten as
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����� �. (33)

Three kinds of equations, i.e., (i) assumed Grüneisen
functions, Equation (16)-(20), (ii) calculated Hugoniot
pressure function, �����, and (iii) the material function

���given by Equation (33) determines the functionl

Figure５ Shock Hugoniot compression curve for TMD PETN
calculated by isothermal data together with
assumed Grüneisen functions. Estimated ���shock
Hugoniot points are also plotted by published
�����Hugoniot data.

Figure６ Estimated shock velocity - particle velocity Hugoniot
for PETN.
Three kinds of symbols are published shock
Hugoniot data１）for crystalline PETN.
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form of the Grüneisen equation of state, i.e., Equation (32).
From Figure 5 and Figure 6, one finds relatively large

scatter in shock data which may be attributed to partial
reaction at the shock front. Even so, on average, difference
between shock data and theoretical prediction is relatively
small. Therefore, theoretical approach which is not based
on shock experiments seems more preferable to provide
reasonable EOS at least for numerical simulation purposes.

5.2 Estimation of shock temperature for PETN
Shock temperature as a function of volume can be

calculated by using Equation (15). Figure 7 shows
estimated temperature for various Grüneisen functions.
Tendency of the magnitude of shock temperature with
various Grüneisen function is seen to be similar to that of
shock pressure.
In order to see the estimated temperature more in

detail, compression ratio of around ��������is magnified
and depicted in Figure 8. One may see still very large
difference in shock temperature depending on the
Grüneisen function. In this figure, difference in pressure
between the cases, (iv) and (v) is found to be very small.

6. Summary
In this paper, Grüneisen equation of state has been

established to describe Shock Hugoniot compression curve
for unreacted high explosives. Main purpose of the
formulation is to give insight into the contribution of the
volume dependence of the Grüneisen parameter. Although
the volume function of the Grüneisen parameter has been
assumed to be described by very simple functions. In this
paper, several volume functions for the Grüneisen
parameter have been used to calculate the dependence of
shock Hugoniot temperature on the Grüneisen function.
The information is important to know the onset
temperature and pressure to induce shock to detonation
transition of solid phase high explosives. A numerical
procedure is derived to compute shock Hugoniot and high

pressure isentrope by using the Olinger et al’s isothermal
compression data for PETN. Further thermodynamic
formulation was required not only for the Grüneisen
function but the constant specific heat.
From the calculation for PETN, one may say, at least

that�����Hugoniot is quite insensitive for the functional
form of the Grüneisen parameter. On the contrary,
difference on thermal pressure or temperature strongly
depends on the Grüneisen function.
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Figure ８ Detailed comparison of estimated shock
temperature for PETN with assumed Grüneisen
functions.

Figure７ Shock temperature for PETN calculated by
Equation (15) with assumed Grüneisen functions.
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