# 静的破砤剤によって生じる並列円孔周辺の有限要素法を用いた応力解析 

福井久明＊，松本和彦＊＊，塚田和彦＊＊，花崎紘一＊＊＊<br>＊（株）ロックス・ジャパン 〒101－0032 東京都千代田区岩本町2－16－9 大和橋ビル4F<br>e－mail：hfukui＠mvg．biglobe．ne．jp<br>＊＊京都大学工学研究科社会基盤工学専攻 〒606－8317京都市左京区吉田本町<br>＊＊＊福井工業大学建設工学専攻 〒910－0028 福井市学園3－6－1

2004年6月11日 受付 2004年11月22日 受理

## 要旨

静的破砕剤による破砕断面設計をおこうにあたり円孔間距離，円孔と自由面との距離等を最適化する必要がある。
本研究は破砕対象物の応力状態を有限要素法を用い二孔並列の円孔間および自由面迄の距離がおよぼす影響について各々数値解析し，き裂が入れ始める箇所の推定をおこなった。

1 辺 200 cm の均質材料に径 $d=5 \mathrm{~cm}$ で穿孔された孔内へ， 100 MPa の円孔内壁圧力が負荷された条件において，（1）並列す る円孔位置が材料中心点より $10 d$ 以内の範囲にあるとき最大主応力 $\sigma_{\max }$ は互いの円孔方向を向き，発生するき裂方向の角度 $\theta$ は $0^{\circ}<|\theta|<12^{\circ}$ であった。一方，（2）円孔位置が材料側壁自由面から $2 d \sim 10 d$ の外壁周辺領域にあるとき，$\sigma \max$ の向き は互いの円孔方向ではなく，発生するき裂方向の角度 $\theta$ は $96^{\circ}<1 \theta \mid<132^{\circ}$ と偏りがあり側壁自由面の影響が強くあらわれて いることが判明した。

次に複数円孔として 8 円孔を等間隔に穿孔し下辺自由面から円孔までの高さを $h=50 \mathrm{~cm} お よ ひ ゙ 15 \mathrm{~cm}$ に各々設定し解析 を行った結果，前者ではき裂の発生し始める場所は互いに向き合う円孔の中心線上付近であり，後者のき裂発生場所は円孔の中心線上から $\theta=20^{\circ} \sim 30^{\circ}$ 自由面の方向へ傾いていることが明らかとなった。

## 1．緒言

材料内部に装薬しその爆発生成ガス圧力が装薬室内に作用した場合，接線方向に作用する引張応力によって半径方向に進展するき裂が発生し材料が破壊される様相は，有限要素法を用いその応力状態の解析は行われている ${ }^{12}$ 。 ${ }^{2}$ すな わち 1 孔での集中装薬における材料破壊の進展は爆発圧力 によるき裂発生と生成ガスがき裂内へ進入する深さとの関係によって破壊現象が解明されている。

次に，並列2孔円が同時に内圧を受けた場合の応力状態につ いては，二次元弾性問題として円孔周辺の応力計算に関し理論解が提案されており ${ }^{3}$ ，円孔内部にそれぞれ異なる圧力を受けた場合，或いは孔径が異なる場合の応力計算も可能となっている。

一方，内圧を受けた 2 孔間の位置変化或いは自由面との距離による影響等を考慮した場合における応力状態は明確 とは云えない。

そこで，本研究は静的破砕剤による破壊現象を推定する ため ${ }^{4)}$ ， 2 孔間の位置を対象物内で変動させその応力状態 を有限要素法で解析した結果を報告する。

## 2． 2 円孔についての解析

## 2.1 解析モデル

並列する円孔内へ等価な応力が負荷され，その円孔間距離および円孔と自由面迄の距離が変化したとき対象物領域内で左右対称に位置する二円孔の応力状態どのように変化 するか二次元岩盤モデルを用い数値解析を行った。

解析モデルは， 1 辺 200 cm の正方形へ 5 cm の円孔を穿孔 し，材料特性としてヤング率 $E=30 \mathrm{GPa}$ ，ポアソン比 $v=0.3$ を用い，固結性の高い石灰岩を想定し温度一定，均質性岩質での条件にて数値解析をした。

静的破砕剤で得られる最大の膨張圧が $1,100 \sim 1,200 \mathrm{Kg} / \mathrm{cm}^{2}$ であることを前提に穿孔内壁面へ圧力 $P=100 \mathrm{MPa}$ づつ作用 させたときの岩盤内応力解析をおこなった。この応力値 $P$ は通常の岩盤強度を十分超えるため，円孔の位置にかかわ らず岩盤にはき裂が発生するものとして数値解析した。 Fig．1にその解析モデル概要を示す。 なお，解析コードはANSYSコードを使用した。


Fig． 1 Analytical model．

## 2.2 有限要素分割モデル

Fig．1で示す並列円孔は対象領域内で対称に位置している ため，左側領域に位置するものだけを移動させ随時解析した。分割モデルは全て四角形四接点要素で要素数は領域縦全体で $48 \times$ 横 $4=2160$ 点に分割し解析したこれをFig． 2 左図に示す。一方，円孔周辺の解析はFig．2右拡大図で示すとおり円孔壁面に60個（角度6度ごと）の要素で分割し解析をおこ なった。


Fig． 2 An example of finite element subdivision．

## 2.3 解析結果および考察

Fig．3は，並列する円孔が対象材料の中心領域 $h=100 \mathrm{~cm}$ ， $2 d=40 \mathrm{~cm}$ の場所にそれぞれ位置するときの円孔周り最大主応力 $\left(\sigma_{1}\right)$ とその周辺応力分布を図示したものである。 その時の $\sigma_{1}$ 最大値は 111 MPa でありこの位置関係の場合に最大の主応力値が発生していることが明らかとなった。ま た円孔周りのき裂発生箇所は $\sigma_{1}$ が最大値を示す領域である可能性が高く，2 孔円間のき裂方向は分布図に現れていると おり互いの円孔中心に向かって進展するものと考えられる。

次にFig．4は円孔周りに発生する $\sigma 1$ の最大値を $\sigma_{1 \text { max }}$ と し，その発生する場所を Fig．5で示す角度 $\theta$ による座標で表し，$\theta$ と円孔位置の関係をしめしている。

即ち，Fig．1で示す相対する2円孔の位置を中心軸に対し $h$ と $d$ を対象に移動し，その各々の位置で発生する最大応力 の円孔周り場所 $\theta$ を Fig．4左図で，またその時発生した最大応力値 $\sigma_{1 m a x}$ を $h$ と $d$ の座標軸でFig． 4 右図に示した。

ここで，$\sigma_{1}$ が引張主応力であることを考えると，$\sigma_{\text {Imax }}$ が岩盤の引張強度を超えるとき破壊が始まり岩盤は引張主応力が最大の領域，即ち $\sigma_{1 \max }$ が発生する場所にき裂が発生 し始める可能性が高い。

したがってFig．4の左図は円孔位置にき裂の入り始める


Fig． 3 Area and spot where the maximum principal stress appears．


Fig． 4 Transition of $\sigma_{1 \max }$ and $\theta$ by changing hole location．

場所，き裂発生の有無を表す図であるといえる。その結果，円孔位置によりき裂が入り始める場所には偏りが見られ，円孔相互および自由面迄への距離の影響によってこの偏り は引き起こされるものと推定される。

一方右図は，材料領域内の各場所で発生する最大応力 $\sigma$ $I m a x$ 値を示している。その結果中央領域で円孔が互いに隣接 してゆくにしたがい，あるいは円孔が自由面の端部へ移動 するにしたがい $\sigma_{1 \text { max }}$ は増大し最終的に 110 MPa レベルの最大値を示している。

Fig．6は，Fig．4左図の円孔位置変化と円孔周り最大応力発生場所を示した図を，さらに $\theta$ の値によって円孔位置ご とに簡素化し，き裂進展方向の範囲を表したものである。 この結果，領域（1）に円孔があるとき円孔間応力の影響が強 く現れき裂は互いの円孔方向に向き合っている。領域（2）に ついては下面自由面の影響が強く現れき裂は自由面の方に


Fig． 5 Coordinate of $\theta$ ．


Fig． 6 Direction range of maximum principal stress at various hole location．

向かっており材料中央部へのき裂進展は考え難い。領域（3） については側面自由面の影響が出ておりき裂進展は側壁面 に沿って進行するものと考えられる。領域（4）については円孔間，自由面がおよぼす影響がほぼ同じか，数値解析上の不定領域で符号が確定しないため $\theta$ にばらつきが生じてい るのか確定されていない。次に，領域（5）および（6）で $\sigma 1 \max$ が自由面上に発生する現象は円孔が自由面にかなり近づいた ときにのみ発生し，円孔と自由壁面までの距離が円孔半径 の2倍以内のとき発生している。

## 3．複数円孔についての解析

2 次元岩盤モデルに複数の円孔を並列に穿孔したモデル を想定し，2円孔の時と同じ荷重条件で解析をおこない，

2 円孔モデルの結果と比べることを目的とした。今回は 8円孔を等間隔に穿孔したモデルについて解析を行った。解析モデルをFig． 7 に示す。2 円孔の解析の時と違い，より実際の静的破砕剤を使った工法に近いモデルにするため， 1方向に無限の大きさを持つモデルを想定した。有限要素法解析の際には，無限の大きさを持つ方向を岩盤内の応力状態にほぼ影響がないと思われるくらいの長さをとることに より解析した。円孔半径は，$d=5 \mathrm{~cm}$ ，円孔間距離は等間隔 55 cm ，一番端の円孔と自由面の距離を 7.5 cm とし，対称軸 に左右対称のモデルとした。材料特性は 2 円孔モデルの時 と同じ，温度一定均質性材料，ヤング率 $E=30 \mathrm{GPa} ゚ ア ソ ン$比 0.3 とし，円孔内壁にそれぞれ 100 MPa をかけることによ り，解析を行った。


Fig． 7 Analytical model by 8 holes．


DMX $=.097787$
SMX $=.297 \mathrm{E}+09$

．500E＋07
$.100 \mathrm{E}+08$ ．300E＋08 ．500E＋08 ． $800 \mathrm{E}+08$ $.100 \mathrm{E}+09$ $.214 \mathrm{E}+09$ $.297 \mathrm{E}+09$

Fig． 8 Relation between maximum principal stress and crack direction．


Fig． 9 Relation between maximum principal stress and crack direction．

Fig．8，Fig．9は下端自由面から円孔までの高さが $h=50$ $\mathrm{cm}, h=15 \mathrm{~cm}$ のとき荷重によって発生するモデル岩盤内の引張応力分布と，各円孔周りで引張主応力が最大となる場所に発生すると考えられるき裂を挿入したものである。 $h=50 \mathrm{~cm}$ の場合，円孔と下端自由面の距離よりも円孔間距離の方が十分小さいためき裂の発生し始める場所は互いの円孔中心線上付近にある。
$h=15 \mathrm{~cm}$ のとき，円孔と下端自由面の距離は円孔間隔の $1 / 2$ であるため，下端自由面の影響を受けき裂の発生し始め る場所は円孔の中心線よりそれぞれ $20^{\circ} \sim 30^{\circ}$ ほど傾いてい る。これは 2 円孔の解析結果と一致するものであり，それぞ れ円孔間の影響，円孔と自由面迄の距離が強く影響するもの と思われる。また一番端の円孔については円孔位置が側面の自由面にかなり近いので，$\sigma l \max$ が側面自由面上に発生した。

したがってh＝ 50 cm のときには，き裂進展はほぼ円孔の中心線上で進行し破砕されるということが考えられるが， $h=15 \mathrm{~cm}$ の場合のき裂進展は円孔の中心線上からずれて進

行するものとなろう。このようなとき円孔の中心線上で破砕を行うためには，円孔数を増やし円孔間隔を小さくする必要がある。

## 4．むすび

本研究は，並列複数円孔の内壁に一定荷重が作用した場合の岩盤内応力状態を数値解析し，円孔周辺のき裂が入り始める可能性が高い場所を推定することができた。
一方，今回は動的なシミュレーションではないため，き裂発生後破砕剤の応力がどのように変化し影響するか重要 なポイントが解析されておらず今後の課題としたい。

## 文 献

1）伊藤一郎，佐々宏一，谷本親伯，工業火薬協会誌32，13－15（1971）．
2）佐々宏一，伊藤一郎，花崎紘一，工業火薬協会誌33，9－15（1972）．
3）花崎絋一，伊藤一郎，水曜会誌，Vol17，No2（1970）．
4）河野俊夫，石井四郎，石灰石，189， 26 （1981）．

# Stress analysis by finite element method around parallel holes occurred by static demolition agent 

Hisaaki Fukui＊，Kazuhiko Matsumoto＊＊，Kazuhiko Tsukada＊＊， and Koichi Hanasaki＊＊＊

This report has described the calculation result by the finite element method（FEM）in order to know about stress contours and transitions appearing on the breakage face by occurring the expansion force of demolition agent，partic－ ularly having the parallel holes on the face．
As the main calculation condition，100MPA is added to each drilling hole wall．And the drilling diameter is $d$ ．
As the result，when there are parallel holes within $10 d$ in the breakage center area，the direction of Maximum Principal Stress（ $\sigma_{1 \max }$ ）turns to each other hole and the rang of it＇s angle $(\theta)$ makes $0^{\circ}<1 \theta \mid<12^{\circ}$ ．On the other hand， when there are parallel holes between $2 d$ and $10 d$ from the breakage edge，the direction of $\sigma_{1 \max }$ is not front but inclined to each other hole．The range of it＇s angle $(\theta)$ makes $96^{\circ}<|\theta|<132^{\circ}$ ．Finally，in the case of eight parallel holes being drilled by straight and equal space in the breakage area，also FEM analysis has achieved．

[^0]
[^0]:    ＊Rox•Japan Co．，Ltd，2－16－9 Iwamotocho，Chiyoda－ku，Tokyo 101－0032，JAPAN
    e－mail：hfukui＠mvg．biglobe．ne．jp
    ＊＊Department of Earth Resources Engineering，Faculty Engineering，Kyoto University
    ＊＊＊Department of Architecture and Civil Engineering，Fukui University of Technology

