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Theoretical calculations of lattice properties
of secondary explosives

Shuji Ye*, Kenichi Tonokura®, and Mitsuo Koshi™

A flexible potential including both intra- and inter-molecular potential was used to calculate
the lattice properties of several secondary explosives such as nitramine crystals of HMX (1,3,5,7-
tetranitro-1,3,5,7- tetraazacycrooctane), RDX (1,3,5- trinitro- 1,3,5-triazacycrohexane) and DMN
(N,N-Dimethylnitramine), and non-nitramine crystals of PETN(Pentaerythritol tetranitrate),
ANTA (3-Amino-5-nitro-1,2,4-triazole), NB (Nitrobenzene) and NM (Nitromethane). The
intramolecular part of the potential contains bond stretching, angle bending, out-of-plane bending,
torsional, and non-bonded motion terms. Parameters in these terms were taken from literatures
and refitted to reproduce the experimental crystal structures and infrared spectra of these
explosives. The Buckingham exp-6 function with Coulombic interactions was used for
intermolecular potential of HMX, RDX, NB, DMN and NM, whereas the Lennard-Jones 6-12
potential with Coulombic interactions was applied for intermolecular interactions in PETN and
ANTA(plus hydrogen bonding potential). It is confirmed that the flexible potentials could accurately
predict lattice parameters and lattice energies of these explosives. In addition, the potentials
could also predict the bulk modulus and its pressure derivatives. Calculated bulk modulus of
NM had a deviation less than 4.5% compared with the experimental data at pressure region of P
< 3.0GPa. Calculated elastic constants, elastic stiffness, averaged Young’s modulus and Poisson

ratio of RDX were in agreement with the experimental data.

1. Introduction

Prediction of performance, sensitivity, chemical
and physical properties of energetic materials are
central problems for the development and the safe
use of new energetic materials. In recent years,
many efforts have been paid to understand and
predict these properties based on theoretical V'
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and experimental methods
simulation has been widely used and was proved
to be a very effective mean for the prediction and
understanding of various properties of high

explosives.
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In order to perform high quality simulation,
accurate intermolecular and intramolecular
potentials are required, and it is not an easy task
to determine accurate potential parameters for the
explosives, which are generally molecular solid
composed of polyatomic organic molecules with
complicated crystal structures. Thompson and his
co-workers *® have developed an intermolecular
potential to predict the structural and
thermochemical parameters for many explosives.
The potential energy functions used in their studies
are composed of pairwise atom-atom (exp-6)
Buckingham or (6-m) Lennard-Jones functions
together with the electrostatic interactions between
different atoms in the molecules. As indicated by
their results '®, their potentials have been very
successful in their ability to describe the
equilibrium structures of a variety of organic
molecular crystals under ambient conditions and
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under moderately high pressure and temperature
conditions. However, the physical and chemical
processes of energetic materials are of most interest
at extremely high pressures and temperatures, in
which conformational molecular changes may
become important. For example, analysis of the
shock initiation of explosives requires
understanding of crystal properties under
extremely high pressure (~GPa) conditions.
Consequently, further developments of the
interaction potential are necessary to describe the
intramolecular motion, molecular deformations,
and the energy flow inside these crystals under such
high pressures. Thompson et al. ” improved their
previous regid-molecule approximation and
extended the potential to include a full
intramolecular potential for the simulations of
energetic materials. At their first attempt, they
selected nitromethane as the prototype explosive
to develop the fully flexible model of an energetic
molecular crystal ”.

In the present paper, we applied the fully flexible
model to the simulation of the lattice properties of
secondary explosives such as PETN(Pentaerythritol
tetranitrate), RDX (1,3,5-trinitro-1,3,5-
triazacycrochexane), polymorphic forms of HMX
(1,3,5,7- tetranitro-1,3,5,7- tetraazacycrooctane),
ANTA (3-Amino-5-nitro-1,2,4-triazole),
NB(nitrobenzene), DMN (N,N-Dimethylnitramine)
and NM(nitromethane).

2. Potential energy functions

We assumed that the potential energy for N
secondary explosive molecules can be described as
the sum of inter and intramolecular interaction
terms:

N N
Vlatnl - 2 (Vin& ramolecular + % 2 Vl']‘.n‘ ermn/arulc) ( 1)
j=l

izl

Except for the PETN and ANTA, the intermolecular
potential is the same as described in reference (1-
7). It consists of the superposition of a pairwise sum
of Buckingham potential, V,(r,,), and coulombic
potentials, V,,°(r, ).

Ves(rup) = Ay exp(=Byy 1) - % ®)
aff
and
V(r,)=-Ja98 3)
Wi 4@01’@

For PETN and ANTA, the potential function was
constructed as a sum of pairwise additive Lennard-
Jones,V“,(r,,), hydrogen bonding,V*®,(r,,), and
coulomb, V,,“(r,,), potentials;
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where r,; is the interatomic distance between the
atoms « and B belonging to different molecules, q,
and q; are the corresponding electrostatic charges
on these atoms, and g, is the dielectric permittivity
constant for free space. The parameters A, , B,,,
Cup Eup Tup» Ay and B, ", for different types of
atomic pairs have been previously published in
references 1-7, 15, 16 and 17 and were used in the
present study without change except for the pair of
atoms O--H interaction and hydrogen bonding
intermolecular potential. The pair of atoms O:-H
interaction and hydrogen bonding intermolecular
potential were refitted to reproduce the
experimental structure. The values of the
intermolecular potential parameters are given in
Tables 1-4.

A set of partial charges used in these calculations
was determined by fitting to the electostatic

Table1l. The Atom-Atom potential Parameters for RDX, HMX, NB, DMN and NM®

Pair (o - p) Ay kd/moD B,A" Cos( kd/moD
H-H 9213.510 3.74 136.3800
C-C 369726.330 3.60 2439.3459
N-N 264795.246 3.78 1668.3316
0-0 290437.820 3.96 1453.3114

* With the exception for a pair of O - H, for pairs of unlike atoms, A, B; and C, were
calculated from the formulate A, =(A,, Ag'”, By =( B, + B2, Cys =( C,, Cyp)'”.
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Table2. The Atom-Atom O - H potential parameters for RDX, HMX, NB, DMN and NM

Pair (& - p) A4 kJ/moD B(A") C.s( kd/moD
RDX 42079.341 3.85 445.2145
HMX 44012.177 3.85 445.2145

NB 61380.377 3.85 445.2145
DMN 51731.377 3.85 445.2145
NM 25661.516 3.85 0.0

Table3. The Atom-Atom potential parameters for ANTA®

Pair (c. - B) €,p{ kd/moD) rop (A
H-H 0.213384 2.43
Cc-C 0.451746 3.912
N-N 0.218154 4.06
0-0 0.853452 2.97

A,g" (kd/moD® B, "( kJ/moD®
O-H 16895.242 6830.6519
N-H 48401.827 5975.5324

® for pairs of unlike atoms, r,,’ and g,z were calculated from the
formulate ro’ =( 1.’ + rp)2, top =( £oy B Ay’ rpg)Y (1'% °
Parameters of the hydrogen bond Lennard -Jonesl2 -10 potential.

‘Tabled. The force constants of the intramolecular potential parameters for PETN.”

Bond stretching parameters Angle bending parameters
bond k, (kd mol' 4D A angle ky(kJ mol’ rad? 8(deg)
N-O 3765.66 1.217 c-CC 334.72 109.5
N-O, 2510.44 1.389 C-C-H 418.41 110.4
c-C 2594.13 1.538 C-C-0, 41841 107.6
C-H 2941.65 1.03 H-C-0, 41841 108.7
C-0, 2677.81 1.433 H-C-H 292.89 111.4
0O-N-O, 585.77 115.98
O-N-O 585.77 127.80
C-O,-N 585.77 117.7
Torsion potential parameters
Dihedral angle Ve(kd/moD 3deg) m i
O-N-O,-C 3.7658 0.0 2 -1
C-C-C-0O, 37.658 0.0 3 +1
N-O,-C-C -4.8117 0.0 3 -1
H-C-C-C 0.4824 0.0 2 +1
Intermolecular and nonbonded potential V, ;' (1)= g, [(ry/ r, 9" - 2(r/ r,)°]

Pair (o - B) ekd) D Pair (¢ - B) ekd) rod
C,-C, 0.25104 3.60 C,C, 0.37656 3.70
H-H 0.04184 3.08 0,-0, 0.62760 3.30
0-0 0.8368 3.20 N-N 0.66944 3.50

* Except N-H, for pairs of unlike atoms, r,,’ and €, , were calculated from the formulate r,,’ =( r,,” + rg)/2,
Eup ~(Egq £ (v’ T )/ (r,3)°. The intermolecular potential parameter for the pair of N-H is
A=47789.6612 eV, By=5.39953¢V, in Vg (0=Agg/ro s’ Bap/ Tuy
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interaction potential derived from the quantum
mechanical calculations for an isolated molecule
whose atoms are arranged in the experimental
crystallographic arrangement. These calculations
have been done using the CHELPG (electrostatic-
potential-derived atom charges) procedure as
implemented in the Gaussian 98 series of program
18 at the MP2/6-31G** level of theory.

The intramolecular potentials were assumed the
form as follows:

Yt etlst =N Vit + 3 Vaogte + 3 Vowsapisoo + Y. Vioruso + Y Veatoos

(6

Terms in the right hand side of equation (6)
represent the bond stretching, angle bending, out-
of-plane bending, torsional and non-bonded motions
in an isolated molecule. The covalent bond stretches
can be approximated as a harmonic oscillator

Vions = %kr (r; - r?)?, N

where r;is the bond distance, r is the equilibrium
bond length and k, is the force constant describing
the stiffness of the bond. The angle-bending
potential is represented by the form,

I,anglc = %kfl (91 - 610 )2 . (8)

where k, is the force constant and 8° is the
equilibrium value of the angle. The out-of-plane
bending potential is represented by the form,

V.

outofplane — kddz , &)

where k, is the force constant and d is the
perpendicular distance of atom i from the plane of
j, k and 1 to which it is boned. The torsion potential

are represented by the form,

Viorsion = Vo(l + 1 cos(m®; - B,)), 10)

where V, is half of the intramolecular torsion
barrier, @ is the torsion angle, m is the phase of
periodicity and m=1, 2, 3, or 4, and i is +1 or -1
according to the sign of m phase. We also considered
intramolecular nonbonded interactions of PETN,
RDX, NB and HMX molecules. The intramolecular
nonbonded interactions are referred to the
interactions between these atoms separated by
three or more bonds in an isolated molecule. The
potential is represented by the Buckingham or
Lennard-Jones form in expression (2) or (4).

All force-field parameters in expression (7)~(10)
are taken directly from literatures for NM ?, HMX
' RDX 2, ANTA?, NB ®, DMN ? and PETN"",
and refitted to produce the experimental observed
structure and infrared spectra. The values of these
parameters are given in Tables 4 ~10. The phonon
and vibron densities of states calculated with these
potential parameters are compared with the
experimental spectra in Fig.1. Although the
intensity is different between calculation and
experiment, the positions of phonon and vibron
modes in density of states are in good agreement
with the experimental spectra.

3. Computational details

The calculations in this study were performed
using the software package of the general utility
lattice program (GULP)**®. For a crystal with Z
molecules per unit cell (N atoms per molecule) at
arbitrary positions, these degrees of freedom are
determined by the 3NZ positions of the atoms in
the unit cell as well as the dimensions and angles
of the unit cell. Considering symmetry constraints
on either lattice parameters or on different subsets
of atomic coordinates decreases this number of the
degrees of freedom. The symmetry-adapted energy
minimization can attain significant reduction of the
computational time necessary to minimize the
lattice energy starting with a trial configuration.
The GULP program tries to use the crystal
symmetry both to make it easier to generate
structures and to speed up the calculations by
considering the asymmetric unit. The flexible
potential presented in GULP not only contains
many kinds of intermolecular potential functions
such as Buckingham and Lennard-Jones potentials,
but also contains a variety of two-, three-, and four-
body potentials for intramolecular potential. Thus
it is suitable for the treatment of both inorganic
and organic systems with fully flexible molecules™
29 1t was used to optimize the crystal structure
and calculate the elastic constants for Ammonium

M2 and other molecules™.

nitrate

In the present calculations, we locate molecules
based on covalent radii and retain all coulomb
interaction within the molecule, and then exclude

the intramolecular coulomb potential. The cut-off
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Table5. The force constants of the intramolecular potential parameters for NM.

Bond Stretching Parameters angle bending parameters
bond k, (kJ mol' A% r'Q angle kq(kJ mol" rad?) 8(deg)
C-N 2019.32 1.499574 C-N-O 294,52 117.04
O-N 4724.32 1.226747 O-N-O 657.85 125.89
C-H 3050.85 1.0900 N-C-H 224 81 107.56
H-C-H 149.94 111.31
Torsion potential parameters
Dihedral angle Volkd/moD 8(deg) m i
H-C-N-O, 0.27 90.0 3 1
H-C-N-O, 0.27 90.0 3 +]
N-0,0,-C 240.37 0.0 2 -1
Table6. The force constants of the intramolecular potential parameters for RDX.
Bond Stretching Parameters
bond k, (kd mol' A? r’(A) bond k, (kJ mol* A% ')
C-N 2717.12 1.454 C-H 2998.23 1.081
O-N 3123.92 1.210 N-N 2812.60 1.380
angle bending parameters
angle ky(kJ mol" rad? o(deg) angle ky(kd mol" rad? 0(deg)
O-N-0 859.75 125.596 C-N-C 793.26 109.500
N-C-N 608.08 109.500 C-N-N 969.23 125.250
N-N-O 1008.82 117.200 N-C-H 243.82 109.500
H-C-H 235.06 109.328
Torsion potential V,,ion = Vo (1+icos(m &, -®)), V, in kJ mol”
Dihedral angle Vo(kJ/moD S(deg) m i
C-N-N-O 8.6835 0.0 2 -1
C-N-C-N 0.96483 0 0 +]
C-N-C-N 11.5780 60.0 1 -1
C-N-C-N -5.7890 60.0 2 -1
Qut-of-Plane parameters V. upiane = kg d* ky in kJ mol* A
N-N-(0), 14.472
Nonbonded potential V, ()= A,/ r,," - B,/ r,’
Pair (@ - p) A, eV B, /eV Pair (o - p) A,peV B, eV
C-N(cross ring) 20542.7448 12.39675 N-N(ring exocyclic) | 1392.376 12.4412
00 144676718 0.2240343

distance R,,, = 40.0A (for hydrogen bonding
potential, R, =3.0 A) were used in order to obtain
accurate summation of the intermolecular potential.

Some parameters in expressions (2) ~ (10) were
determined to reproduce the experimental crystal
structure and infrared spectra. In minimized
configuration, we didn't fix lattice parameters and
the atom positions, The intra- and intermolecular
potential parameters used here are presented in
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Tables 1~10. The minimized configurations have
been verified by phonon calculations that the first
three vibrational frequencies are equal to zero and
all of other frequencies have positive values,
indicating the existence of a local minimum. The
experimental crystal structure of these molecules
are taken from literatures™ *. And the numerical
designations of the atoms are arranged in the
experimental crystallographic arrangement™ ™,
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Table7. The force constants of the intramolecular potential parameters for HMX,DMN.*

B-HMX aHMX 5 HMX DMN
Bond Bond Stretches Vy4, = 172k, (r;- 1,9 k, in kd mol* A2
O-N 3888.64 3888.64 8327.18 5348.24
N-N 4149.55 4149.55 4149.55 3417.24
N-C 3005.25 3005.25 3005.25 3055.66
C-H 2954.81 2954.81 2954.81 3362.85
Bond angle Vangtes = 112 kq (6, - 8,%, k, in kJ mol” rad™
O-N-O 426.54 426.54 426.54 1616.78
O-N-N 523.03 523.03 523.03 2240.62
N-N-C 543.96 543.96 543.96 1041.90
C-N-C 292,91 292,91 292.91 1484.48
N-C-H 361.52 361.52 361.52 694.71
H-C-H 322.19 322.19 322.19 610.70
N-C-N 292.91 292,91 202.91 —_
Dihedral angle ® Viorsions = Ve (1+icos(m @, -dy)), V,, in kJ mol’
O-N-N-C 17.6787(-2) 17.6787(-2) 17.6787(-2) 90.25(-2)
O-N-N-C 1.6529(-4) 1.6529(-4) 1.6529(-4) —
O-N-N-C 0.0084(-8) 0.0084(-8) 0.0084(-8) —
H-C-N-N -0.3348(-3) -4.535(+3) -4.535(+3) 9.20(+3)
C-N-C-N 4,728(-2) 9.649(-2) 8.684(-2) —
H-C-N-C +0.3348(-3) -0.3348(-3) -0.3348(-3) —
H- C-H-H — — — -0.1930(-2)
Out of plane Out-of-plane bending potential V. pium = kg &, Ky in kJ mol* A*
N-N—(C), 0.0051 0.0051 0.0051 —
N-N-(0), 0.0569 0.0569 0.0569 —

® the equilibrium value of r’ and 6° is equal to the averaged value of experiment, ®,=0.

® The values in parenthesis are the sign of m phase and m.

Table8. The non-bonded intramolecular potential parameters for HMX.

Kayaku Gakkaishi, Vol. 63, No. 3, 2002

Pair (o - ) As( kJ/moD B (A") Co{ kd/mol)
H - H(a,8,5-HMX) 11087.145 3.74 114.6494
C - Clo,p,6-HMX) 62664.080 3.09 2681.3027
N - N(a,,8,5-HMX) 254547.403 3.78 2092.1541
0 - O(o,8,5-HMX) 317357.530 4.063 1669.1226
H-C(5-HMX) 43723.412 3.415 554.4460
H-C(o-HMX) 29253.105 3.415 554.4460
- 109-



Table9. The force constants of the intramolecular potential parameters for ANTA."

Bond stretching parameters, k, (kJ mol* A?

bond k, bond k, Bond k, bond k,
N1-N2 2616.76 N1-C2 1034.03 C2-N3 1837.95 N3-Cl 2870.56
C1-N2 2332.16 C1-N4 2482.62 N4-01 2035.10 N4-02 2364.67
C2-N5 2539.35 N5-H2 3909.11 N5-H3 4032.54 N1-H1 4011.62

Angle bending parameters, k,(kJ mol" rad?

angle ke angle K,

Angle k, angle k,

N2-N]-C2 194543 | NI1-N2-Cl 1446.45
N2-C1-N4 943.78 N3-C1-N4 1344.95
02-N4-01 1202.48 | NI1-C2-N5 930.73
C2-N5-H3 197.15 H2-N5-H3 176.61

N2-NI1-H1 414.93

C2-N3-Cl 863.62 N2-C1-N3 871.95
C1-N4-02 1227.54 C1-N4-0l 1464.65
N3-C2-N5 2032.29 C2-N5-H2 285.35
C2-N1-Hl 116.23

Torsion potential ® V, ..cas = Ve (1+icos(m @, -®,)), V, in kdJ mol’

Dihedral angle Ve Dihedral angle Vo
02-N4-C1-N3 -33.81(+2) 02-N4-C1-N3 13.09(+4)
O1-N4-C1-N2 -35.07(+2) 01-N4-C1-N2 13.31(+4)
H3-N5-C2-N3 100.44(-2) H3-N5-C2-N3 25.21(+4)
H2-N5-C2-N1 16.26(+2) H2-N5-C2-N1 20.42(+4)
N3-C2-N1-N2 8.829(-2) C2-N1-N2-Cl 7.532(-2)
N5-C2-N1-H1 9.205(-2) N3-C2-N1-H1 7.532(+2)
N4-C1-N2-N] 7.364(+2)

Out-of-plane bending potential V,.pian = ke d°, kq in kd mol* A
Out-of-plane bending k, Out-of-plane bending ky
N4-C1(N2N3) 0.0135 N5-C2(NIN3) 0.00695
HI1-N1(C2N2) 0.066

® the equilibrium value of r’ and 8° is equal to the averaged value of experiment, ®,=0. ® The values in

parenthesis are the sign of m phase and m.

4. Results and discussion
A. Molecular packing calculations

A general procedure for testing empirical or
semiempirical inter- and intramolecular potential
energy functions for organic crystals is the use of
molecular packing calculations™. The results of the
molecular packing calculation by using the GULP
program are given in Tables 11-13. The differences
between lattice and molecular parameters obtained
by energy minimization and the experimental
structures are given in Table 11. The maximum
deviation of the lattice dimensions is -3.77% for NM
and DMN, and the maximum deviation of unit cell
volume is -3.77%. On the other hand, the deviation
of lattice dimensions and unit cell volume of NB,
RDX, PETN and HMX are less than 2.0%. For NM,
RDX, PETN, o«-HMX and 8-HMX, there are no

changes caused by the optimization in the values
of the unit cell angles, which remain 90° or 120°
consistent with the space group symmetry.

For the minimized configuration, the total lattice
energies together with the corresponding
electrostatic energy contribution are also given in
the Table 11. It is worthy mentioning that the
calculated lattice energies are also in excellent
agreement with the available experiment data with
a maximum deviation of only 2.4%.

We also calculate lattice parameters at high
pressure below 4.0 GPa. For different explosives,
a, b and ¢ axis have different compressible property.
The volume of unit cell as a function of pressure is
given in Tablel2. Thompson et al.¥**” have
calculated the crystal structure of NM, PETN, RDX
and B-HMX under hydrostatic compression using
constant pressure and temperature molecular
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Table 10. The force constants of the intramolecular potential parameters for NB.*

Bond stretching parameters, k, (kd mol* A%

bond k, bond k, Bond k, bond k,
C-N 2659.42 N-O 5717.56 Cl1-C2 3823.80 C1-C6 3823.80
C2-C3 3846.61 C5-Cé 3846.61 C3-C4 3788.15 C4-C5 3788.15
C2-H 3186.93 C6-H 3186.93 C3-H 3096.99 C5-H 3096.99
C4-H 3085.72
Angle bending parameters, k,(kJ mol" rad?)
angle k, angle ke Angle K, angle ke
O-N-O 1142.99 C1-N-0O2 1100.47 C1-N-O1 1100.47 C2-CI-N 1013.09
C6-C1-N 1013.09 C-C-H 234.35 C-C-C 527.22
Torsion potential ® Vi oms = Vo (1+icos(m @, -®y), V, in kJ mol’

Dihedral angle Vo Dihedral angle Ve
C6-C1-N-0O1 18.11(-2) C2-C1-N-O2 18.11¢-2)
C1-C2-C3-C4 -4.313(-2) C2-C3-C4-C5 -4.313 (-2)
C3-C4-C5-C6 -4.313(-2) C4-C5-C6-Cl -4.313(-2)
C5-C6-C1-C2 -4,313 (-2) C6-C1-C2-C3 -4.313(-2)

Out-of-plane bending potential V_f1an = ky @, k, in kJ mol* A?
Out-of-plane bending ky Out-of-plane bending k,
C1-N(0), 7.756 H-C(C), 4,928

N-C(C), 3.811
Nonbonded potential Vo3 ()= A, rop” - Boy/ Tuy’

Pair (. - p) AggeV B, /eV

0-C4 24908.65 24.097

O-H 2072.455 4.4918

N-C4 38274.895 28.333

® the equilibrium value of r and 8° is equal to the averaged value of experiment, ®,=0.

® The values in parenthesis are the sign of m phase and m.

dynamics simulations (NPT-MD). They also
performed molecular packing (MP) calculations” ™.
Present flexible potential model can produce better
agreement with the experimental data than the
potential used by Thompson et al®® The explosives
in the present study have the compressibility of
NM>NB>DMN, RDX>o-HMX > 5-HMX > PETN >f-
HMX > ANTA.

We didn’t fix lattice parameters and the atom
positions in energy minimization. However, the
lattice parameters and molecular geometrical
parameters obtained by minimized equilibrium are
very close to the corresponding experimental values,
which suggest that the present flexible potential
can accurately predict the equilibrium properties
such as lattice parameters, molecular geometrical
parameters and lattice energies in these explosive

crystals.

Kayaku Gakkaishi, Vol. 63, No. 3, 2002

B. Elastic constants and bulk modulus

The elastic constant matrix is a 6x6 matrix which
contains the second derivatives of the energy
density with respect to external strain®.
_ 1
T VW, -W.WIW.)
where W, is the strain-strain second derivative

E

an

matrix, W_. is the Cartesian-space coordinate second
derivative matrix, W, is the mixed Cartesian-strain
second derivative matrix, and V is the volume of
the unit cell.

It is important to note that the elastic constant
matrix, in general, depends on the orientation of
the unit cell relative to the Cartesian axes. Because
GULP program aligns the a vector along the x axis,
b in the xy plane, then the elastic constants can be
calculated accordingly.

Except for the calculations of elastic constants,
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Table 11. Comparison of the calculated and experimental lattice parameters and total energies”

Lattice energy Lattice parameter
Explosive Eia E ot v a b C o ] Y

NM exp| -52.3 — 289.3304 | 5.244 6.320 8.730 90.0 90.0 90.0
cale| -52.31 | -35.79 |278.4161 5.047 6.405 8.613 90.0 90.0 90.0

change % 0.0 -3.77 -3.76 1.34 -1.34 0.0 0.0 0.0
DMN exp| -74.83 — 2194374 | 6.129 6.501 6.060 90.0 114.66 90.0
cale| -74.14 | -26.20 |213.9499| 6.231 6.256 6.053 90.0 114,93 90.0

change % 0.92 -2.50 1.66 -3.77 -0.12 0.0 0.24 0.0
ANTA exp — — 0427696 | 14.199 | 4.844 14.258 90.0 105.98 90.0
cale| -124.60 | -71.57 |951.6173| 14.256 | 4.930 13.929 90.0 103.54 90.0

change % 0.94 0.40 1.78 -2.31 0.0 -2.30 0.0
NB exp — — 571.1463 | 3.8014 { 11.6153 | 12.9843 90.0 94,984 90.0
cale| -83.57 | -13.52 |564.4706 | 3.7523 | 11.5037 | 13.0951 90.0 93.025 90.0

change % -1.17 -1.29 -0.96 0.85 0.0 -2.06 0.0
B-HMX exp| -180.16° — 519.3869 | 6.540 | 11.050 | 8.700 90.0 124.3 90.0
cale| -180.29 | -60.27 }516.4701 6.409 | 11.026 8.797 90.0 123.82 80.0

change % -0.07 -0.56 -2.00 -0.22 1.11 0.0 -0.39 0.0
o-HMX exp — — ]2138.7002] 15.14 23.89 5.913 90.0 90.0 90.0
cale| -179.35| -72.48 |2138.3476| 15.191 | 23.826 5.908 90.0 90.0 90.0

change % -0.016 0.34 -0.27 -0.85 0.0 0.0 0.0
&HMX exp| -166.86° —  |1676.2665 7.711 7.711 32.553 90.0 90.0 120.0
cale| -169.15| -68.31 {1662.3923] 7.684 7.684 32514 90.0 90.0 120.0

change % -1.37 -0.83 -0.35 -0.35 -0.12 0.0 0.0 0.0
RDX exp| -135.06° — |1633.8557| 13.181 | 11.574 | 10.709 90.0 90.0 90.0
cale| -134.91| -52.34 |1658.1047| 13.366 | 11.694 | 10.609 90.0 90.0 90.0

change % 0.11 1.48 1.40 1.04 -0.93 0.0 0.0 0.0
PETN(D exp| -156.9 —_ 1224.4967| 13.29 13.49 6.83 90.0 90.0 90.0
cale| -153.14 | -43.86 |1241.4611| 13.237 | 13.588 6.902 90.0 90.0 90.0

change % 24 1.39 -0.40 0.73 1.05 0.0 0.0 0.0

“Lattice dimensions a,b,c are given in angstroms and the angles a, B, y indegrees. Total(E,,.;) and
Electrostatic (E,,,) lattice energies are in kdmol”. The lattice energies are calculated using the
relationship: E = -AH,,,"2RT, AH,, is the experimental sublimation enthalpy, T=298K. *data from ref.7

and 40, “data from ref.41, “data from ref.42, *data from ref.43, ‘data from ref.40.

in the minimized configuration, bulk modulus can
be calculated by the equation B=(1/V)(d’E/dV?). We
calculate the bulk modulus as a function of pressure.
The results are given in Table 12. Except for NM,
PETN, p-HMX and RDX, there are no experimental
data for comparison. However, the bulk modulus B
and its pressure derivatives B=dB/dP of NM, PETN,
p-HMX and RDX at zero pressure are in good
agreement with the experimental value. The
calculated bulk modulus of NM, PETN, -HMX and
RDX are 10.110, 13.389, 15.975 and 11.978 GPa,
whereas the corresponding experimental values are
10.1, 9.9, 13.5 and 13.0 GPa'?"'***, The values of
their pressure derivatives B=dB/dP are 5.695,

- 12- K4

12.030, 8.377 and 6.618 while the experimental data
are 5.966, 11.0, 9.3 and 6.6'2-1¥49_

The elastic constants for the optimized structure
of NM are given in Table 13. Since the matrix is
symmetric, only the upper half is given.
Unfortunately, no experimental data were available
for elastic constant. However, the bulk modulus of
B=10.11 GPa in Table 12 is in excellent agreement
with the experimental value B, =10.1 GPa reported
by Yarger and Olinger'?. We calculate the bulk
modulus and Young's Modulus as a function of
hydrostatic pressure. As shown in Fig.2, in the
pressure range of P < 3.0GPa, the bulk modulus has
a deviation less than 4.5% compared with the

m

&



Table 12. Coefficients of the quadratic fits of the form A, (1+A,P+A,P? of the unit cell volume and bulk
modulus as function of pressure (GPa).

System Aylexp) A, A, A,
NM V(A% 289.3304 277.06657 -7.3193x10* 7.6006x10"
B(GPa) 10.1° 10.11046 0.56324 -9.97877x10*
DMN V(A% 219.4374 213.1150 -6:3729x102 6.4473x10°
B(GPa) — 11.33071 0.63436 -2.38564x102
ANTA VA 942.7696 949.8063 -4.4589x10% 3.8904x10°
B(GPa) — 18.3242 0.39880 -8.73817x10°
NB V(A9 571.1463 562.6989 -6.7556x10 7.0390x10°
B(GPa) — 9.18662 0.82419 -2.82541x10*
g-HMX V(A9 519.3869 515.2163 -4.8111x107 4.0141x10°
B(GPa) 13.5° 15.975 0.52436 -5.54644x10*
a-HMX V(&%) 2138.7002 2133.1262 -6.0448x10" 6.2816x10™*
B(GPa) _ 12.53829 0.67039 -4.36543x10
§-HMX V(A% 1676.2665 1656.1678 -5.7584x10% 5.5259x10°
B(GPa) —_ 12.48942 0.67004 -5.20553x102
RDX V(A% 1633.8557 1658.2127 -6.4119x102 6.08818x10*
B(GPa) 13.0° 11.97804 0.55250 -3.03080x102
PETN V(A% 1224.4967 1237.1661 -5.0119%10° 4.7681x10"
B(GPa) 9.9° 13.38934 0.89847 -0.1061

* data from ref. 12, * data from ref 13, < data from ref 44.

Table 13. The elastic constants for the optimized structure of NM and RDX(]OGPa)V

”Spe;:iési Cy Wc_‘zﬁz L Cy __g« 1 Ces ‘VCGG Cy. Aq;“ W.C?;’__“
NM 1.64873 | 1.49782 | 1.92516 | 0.63213 | 0.41066 | 0.78144 | 0.64893 | 0.45362 | 0.68050
RDX 2.89100 | 2.50470 | 1.42922 | 0.51448 | 0.38449 | 0.42370 1.02984 | 0.65250 | 0.75896
Exp." 1.958 2.498 1.789 0.406 0.515 0.690 0.819 0.590 0.580

" data from ref. 14

0.2
1 Raman Spectra of RDX at 3.9 K
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Fig.1 The Raman spectra of RDX at 3.9 K and the calculated phonon/
vibron density of states.
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Fig.2 The bulk moduli of NM as a function of the
pressure at 298 K.
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Fig.3 The Young's moduli of NM as a function of
the pressure at 298 K.

12, Figure 3 shows a plot of the

experimental data
Young’s modulus against pressures. The Young’s
modulus increases dramatically with increasing
pressure. The Young's modulus for x axis becomes
the most compressible direction above 9.0 GPa,
while the young’s modulus for z axis is least
compressible direction at any pressure.

Recently, the entire set of elastic constants for
RDX has been measured by Haussiil'’. Comparison
between experimental results and calculation in
Table 13, accepts that the value of C,, has large
deviation, other elastic constants are consistent
with the experimental data. The elastic stiffness
C=(C, +C,+ Cyy + Cyy + G5 + Cyet Cpp + Cpi+ Cp)f9
of RDX was also calculated. The calculation value
of C=1.177 is almost the same as the experimental
value of C=1.105. The averaged Young’s modulus
(18.149GPa) has a deviation of only 2.93% compared
with the experimental value (17.633 GPa). The
averaged Poisson ratio of 0.278 is comparable to the
experimental value of 0.238,

—114—

5. Conclusions

A flexible potential including both intra- and inter-
molecular potential terms was used to calculate the
lattice properties of secondary explosives such as
nitramine crystals of HMX, RDX and DMN and non-
nitramine crystals of PETN, ANTA, NB, and NM.
Not only the calculated lattice parameters and
lattice energies, but also bulk modulus and its
pressure derivative are in excellent agreement with
the available experiment data. In addition, the
calculated elastic constants, elastic stiffness, the
averaged Young’s modulus and Poisson ratio of RDX
are in agreement with the experimental data. These
indicate that the flexible potentials are appropriate
for these explosives with different structures. The
flexible potentials are very useful to describe the
intramolecular motion, molecular deformations and
the energy flow inside these crystals with different
impact sensitivity.
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