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A Simplified Analysis on The Magic Numbers in Detonation

by Hiroyuki MATSUI and Mitsuo KOSHI

Analytical calculations with simplified models of detonation have shown the good agreement
with the experimentally observed critical conditions for initiating directly an unconfined
spherical detonation. The relation between the cell size of detonation propagating in straight
tubes and the critical tube diameters, i.e., experimentally observed magic number 13 is well

reproduced theoretically in a stoichiometric mixture of hydrogen and oxygen over the initial

pressures of 0.1 to 5 atmospheres. The nature of the magic number seems to be explained by
the relation of local and bulk detonability limits caused by the physical loss terms due to the

boundary conditions.

1. Introduction
Physical or chemical constants (or quasi — constants)
which are universally valid for a variety of experimen-
tal conditions have sometimes appeared too difficult
to explain by the existent theories, thus they are often
called “magic numbers”™. Examples can be found in
the field of detonation studies ; it has been long
discussed why the circular tubes must have a
diameter d. large enough to accomodate at least 13
transverse waves for directly initiating an unconfined
spherical detonation if the tube is connected to a large
volume vesselV-?, i.e.,
d.=M;i (M;=13) (1)
where, 1 is the maximun width of the transverse
waves. Usually the trace of the interacting transverse
waves appers regular cellular feature, so 1 is often call-
ed “cell size”. Unfortunately, no clear explanation of
the physical and/or chemical reason for this magic
number has come out so far.
Also for many fuel —oxygen mixtures, Westbrook and
coworkers have shown that chemical induction length
for onedimensional ZND model, A can be well cor-
related with the cell size 1 by multiplying 289, i.e.,
1=M,A (M,=29) (2)
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where, 4 has been estimated by use of calculated in-
duction delay time ¢ in an adiabatic, constant volume
system then multiplied by the flow speed behind a
plane shock wave with C-]J velocity. This finding is
very useful because one can easily evaluate the critical
tube diameter for inducing the direct detonation only
by performing rather simple computations of elemen-
tary chemical processes. Recent development of the
large —scale computers has enabled ones to perform
detailed calculations of 2—or 3 —dimensional reacting
flows and some demonstrations of the local shock
wave interactions leading to the cellular structures in
detonation waves have been re 5 =7,

Although these experimental and computational
works have suggested that there exists a close correla-
tion between the chemical reaction rates and the
cellular structure of the detonation, trials of the
physically or chemically based explanations for these
magic numbers seem not yet successful. The present
study has been undertaken in order to investigate the
nature of these magic numbers, i.e., the critical condi-
tions of the propagation of detonation by using
simplified fluid dynamic models. Such simplifications
may introduce some uncertainties in the calculated
results and the discussions may be limited to a
qualitative level, however, it will be advantageous for
exploring the relations between the chemical reactivi-
ty and the local and global propagation limits more
clearly rather than performing time consuming com-
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putation of the fluid dynamic conservation equations.
As for the chemical reactions, on the other hand, it is
desirable to employ the exact expressions for the rates
of heat release behind strong shock waves of fuel —ox-
ygen mixture, because the test have to be performed
over a wide range of experimental conditions, if other-
wise, the chemical term can introduce too much uncer-
tainties (because of its nonlinear nature) for making
discussions of the critical condition. Thus, a
stoichiometric mixture of hydrogen and oxygen has
been employed as a test of the investigation, since the
reaction mechanism of it is considered as almost
established. Detailed elementary reactions for the mix-
ture haves been numerically solved simultaneously
with the simplified fluid dynamic conservation equa-
tions.

2. The model and the analyses for direct transi-

tion of a planar to a spherical detonation

A conceputual model for expressing the transition
of a planar to a spherical detonations is illustrated in
Fig.1. If the incident detonation propagating in a cir-
cular tube is well above the critical condition for the
transition, the detonation front starts to expands
semispherically at the exit to free volume, as is shown
in Fig.1—a. In contrast, the detonation front starts to
shrink at the exit as is shown is Fig.1 b, if it is below
the critical condition because the loss term caused by
the Prandtle— Meyer expansion overwhelms its abili-
ty of recovering to the selfsustained propagation of
detonation. From these considerations, the. critical
condition for the direct tramsition of a planar to
spherical detonation should be just in the intermediate
of these two cases and may be illustrated as shown in
Fig.1—c. The planar detonation propagating in a cir-
cular tube with a critical tube diameter d, is assumed
not to change its cross section even after it starts to
propagate in a unconfined situation at its critical condi-
tion. This situation is, of course, unrealistic since the
free detonation surrounded by explosive gas mixture
is rather unstable and so, cannot keep its cross section
constant very long. According to this simplified
critical conditibn, a planar detonation wave pro-
pagating in a tube with a constant cross section will
suffice a loss of mass when the surrounding wall is sud-
denly removed, and the averaged loss term behind a
planar detonation front can be easily evaluated by for-
mulating the following conservation equations
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Fig. 1 Conceptual illustrations of the transition

of a plane to a spherical detonation.

for a steady free detonation®.

mass conservation : d(puA)/dz=0 3)
momentum conservation :
d[ (pu?+p)A]=pdA/dz ()]
energy conservation :
udw/dz+C,dT/dz — z;(Ah)dY; /dz=0 (5)

where, p is the total density of gas mixture, u the flow
velocity for the coordinate fixed to the shock front, A
the coss section area of the reactive flow, p the
pressure, z the distance from the shock front, C, the
averaged specific heat under constant pressure,
T the temperature, Ah; the heat of formation of jth
species per unit mass, and Y; the mass fraction of the
jth species, respectively. The equation governing
chemical reactions is given by,

dY; /dz= (m; /p)dC;/dz (6)
where, m; and C; denote the molecular weight and
molar concentration of jth species, respectively. Equa-
tions (3) — (6) can be rewritten in the following forms

dp/dz=[(;—1)pM*/(M2—1)] [dQ/dz—§,] (7
and

&s=[a¥(y—1)] d(logA)/dz (8)
where, 7 is the ratio of specific heats, a the frozen
sound speed, and M the local Mach number defined
as, M=u/a, respectively. §, (the averaged loss term
caused by the free expansion) has been simultaneous-
ly evaluated by use of Newton approximation,

p=po+poD?(dA/d2)%[1+ (dA/dz)?) 9)
where, pqg, Po, 2nd D denote the initial pressure, initial
density, and the steady detonation velocity, respective
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Fig. 2 Calculated results on the detonation velocity with free boundary for a stoichiometric

mixture of H, and O,

ly. The rate of heat production by the chemical reac-
tions per unit mass,
dQ/dz=Z;(ah;)dY/dz )
has been also solved simultaneously. The elementary
reactions used in this study are the same as those of
Westbrook?®. As the dissociation and recombination
of HO, are expected to be in the fall—off region at
high pressures'”, the present calculations are limited
only for the low pressure range (p,=0.1—-5 at-
mospheres) where the rate constants at low pressue
limit can be used. Equations (7)—00 have been in-
tegrated by using Gear's method with an assumed
value of D by which an initial condition is given by
Rankine — Hugoniot relations for nonreactive flow.
Search for the eigenvalue D has been continued until
the generalized C—]J condition,
dQ'/dt=¢,* an
has been satisfied, where the asterisk denotes quan-
tities at the C—J condition : M=1. During the integra-
tion, r has been reevaluated in each integral step,
although it is assumed as a constant in the derivation
of Equation (7). As the variation of 7 is very small,
such approximation has not brought significant er-
rors. The results of the present calculations on the
detonation velocity is shown is Fig.2 against the in-
verse of the tube diameter, d~!. The solutions give
dual —eigenvalues for D for a fixed tube diameter.
The higher values of the solution on D agrees very
well with that calculated by using ideal C—J theory at
sufficiently large tube diameters. Also it is shown that
no solution exist for d<d, thus d. is decided

theoretically for free detonation. As shown in Fig.3,
the calculated results on d. agrees very well with the
experiment by Matsui and Lee'’; the present model
for expressing the critical condition of the direct initia-
tion of a spherical detonation seems reasonable. Also
the calculated magic number M; (=d/2.) is shown in
the same figure, where, 2, is the cell size decided in
the experimental work by Manzhaley et al'?. In this
work, the mean value of i, has been given by the
following form,
log 2.= —0.969 log p,—0.878
where, i, and p, are expressed in cm and atms. units,
respectively. It is found that the limit of the propaga-
tion of free detonation agrees very well with a condi-
tion of d/i=13 for the wide range of initial
pressures. So, as far as empirical cell size is admitted,
it may be reasonable to conclude that the magic
number M, can be roughly explained by the present
simplified analysis, at least for the detonation of the
stoichiometric mixture of hydrogen and oxygen.
3. Discussion of the local cellular structure of
detonation in a straight tube
Evaluation of the size of the cellular structure in
detonation wave traversing in a straight tube is essen-
tially difficult since one should solve nonsteady three
dimensional conservation equations coupled with
many elementary reactions. According to the detailed
examination of the detonation structure propagating
in a tube, both experiment'® and computation” sug-
gest that the interactions of traversing waves normal
to the tube axis periodically produce local explosions,
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and so the detonation front is composed of such many
local explosions associated with curved shock fronts
(see Fig.4). Thus, it may be interesting to investigate
the nature of this microscopic explosion associated
with a curved shock front.

By using an assumption of axial symmetric flow
behind a spherical leading shock front, the conserva-
tion equation of mass along the symmetric axis for
steady flow is approximately expressed by'® ;

d(pu)/dz=—2p(D—u)/(R,—2) 2
where, R, is the radius of the leading shock front.
Together with the conservation equations for momen-
tum and energy, the following ordinary differential
equation is derived.

dp/dz=[(r—1)pM?}/(M? - 1)(dQ/dz—¢,]
and,

&=2a3(D~u)/[(r—1) (Ry—2)u] 14
where, §; denotes the loss term caused by the flow
deflection behind nonplanar leading shock front. The
solutions of Equations ¢3 and (14 can be obtained by
the same procedure as discussed in the previous sec-
tion. A generalized C—]J condition,

dQ'idz=¢" 3
is satisfied at M=1 when an exact eigenvalue of the
detonation velocity is given as an initial condition.

3
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Fig. 4 The model for describing the propagation
of the local explosion of detonation.

The calculated detonation velocity is shown in Fig.5
against nondimensional shock radius, R/%. The
critical condition for sustaining steady propagation of
detonation is found to lie in the range,

R, J4p=25-5 (]
for the stoichiometric mixture of hydrogen and ox-
ygen with initial pressures, p,=0.1—5 atmospheres,
where R,. denotes the critical shock wave radius for
realizing selfsustainance of a steady detonation.

The physical meaning of solving Equation (3 is to
evaluate the approximate magnitude of loss term caus-
ed by the curved shock front which characterize the
microscopic structure of the detonation wave pro
pagating in a straight tube, so, it is assumed in this
study that R, represents the shock wave radius when
the microscopic cellular structure is at its maximum
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Fig. 5 ‘l'he calculated detonation velocity with a spherical leading
shock front in a stoichiometric mixture of H, and O,.

size. One should then decide a coefficient k which is
defined as,

k=R,/1 )
from the theoretical consideration. As 2 represents
the maximum width of the periodically produced
transverse waves, the inclination of the shock front
must not be too large in order to initiate the successive
local explosion at the intersection of the adjuscent
shock waves. There is a critical condition for the
shock wave angle to sustain a subsonic flow behind an
oblique shock wave. As this condition corresponds to
a strong interaction (so can lead to a local explosion
very quickly), it is used to evaluate k in this study, i.
e,

k=2cosa, (1]
where, a. is the critical angle of the shock wave slope
against z axis, and it is easily evaluated by the follow-
ing equation,

tan [a.—sin=! [ (y—1)/2y) J1?

=2cot a sin2a/(r+cos2a;) 09

The calculation shows that k is approximately equal to
2 when 7 is assumed to be equal to that at C—J condi-
tion. Calculations on the maximum cell size 2 has been
performed by using Equation (% and the results are
compared with those of experiment in Fig.6.
The calculated cell size agrees pretty well with the ex-
perimental one, i, ; this indicates the validity of the
assumptions introduced in this study. Thus, it is very
likely that the maximum cellular width corresponds,
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Fig. 6 A comparison of the calculated cell width, 2
with experiment (present calculation;——,ex-
perimental cell width, 2 by Manzhaley et al ;
o)

roughly speaking, to the critical condition of the
selfsustainance of the microscopic detonation with a
spherical leading shock front.

This finding may be explained phenomenologically as
follows. The microscopic explosion initiated at the in-
teraction of transverse waves rapidly expands with
decaying propagation velocity until R,=R,, where
the propagating shock waves have an ability of produc-
ing new explosions if it is still sufficiently strong
enough to sustain detonation by itself. So, in a so call-
ed steady detonation, there seems to occur a
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Fig. 7 Pressure dependence of the calculated magic

number, M , = 2,4/ and comparison with em-
pilical value, 29.

resonance condition for wave production among the
microscopic explosions, and this resonance condition
seems to be associated with the critical condition of
each local explosion.
The velocity of the propagation of the local explosion
along z axis, D, varies in the range, D,;>D,>D,,
where, D, and D. denote the initial and the critical
detonation velocity, respectively. Of course, the time
and space averaged value of D, should correspond to
the macroscopic detonation velocity, D, but no
theoretical evidence can be supplied in this point.
In Fig.7, the calculated result on the second magic
number, M,= 4/z..4 is shown against initial pressure p,.
Here, z;.4 is the computed induction length which is
defined as the reaction length required for the achieve-
ment of 5% increment of temperature. The present
result indicates that 2/z;.4 is about 8 at p, = 0.1 atms.
(28% of M, =29 given by Westbrook®), but the agree-
ment becomes better as p, increases. The difference
of the magnitudes on M, however, seems not serious
because both the temperature and pressure histories
along which chemical kinetic equations are integrated
are different each other.

4. Conclusion

From the above discussions, it is suggested that the
local cellular structure of detonation propagating in a
straight tube is caused by the quasiresonant behaviour
of the interacting transverse waves which is
represented by a spherical leading shock front in this
study. The resonant nature is likely to be strongly
related to the critical condition for the selfsus-
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tainance of microscopic explosions.

The bulk nature of the propagation of quasisteady
detonation, on the other hand, can be expressed pretty
well by the onedimensional ZND model even in
describing the critical condition for the direct initia-
tion of a spherical detonation.

Thus, it is likely that the magic number M, =13 is
the representation of the relation between the
microscopic and the macroscopic limits of selfsus-
tainance of detonation.

However, the validity of the models and the assump-
tions have been tested only for a stoichiometric mix-
ture of H: and O, at present. If the same conclusion is
obtained for the different fuel—oxygen mixtures as
well, the conclusion of this study will become more evi-
dent.

Also the elementary reactions associated with HO, us-
ed in this study seems insufficient for describing the
rate of chemical energy release at higher pressure
range. The successive studies including some
hydrocarbons—oxygen mixtures with modified
elementary reactions are now being continued.
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