potassium chlorate, potassium perchlorate, potassium nitrate etc.) and combustibles (shellac, rosin, pine root pitch etc. for low temperature class and metal magnesium powder for high temperature class).

In case of low temperature class NaD lines (5890 and 5896Å, caused by impurity contained mainly in oxidizers), continuous spectra (caused by carbon particles and K atoms) and K lines (5802, 5783, 5832, 5813, 5340, 5324, 5360, 5343, 5090, 5084, 5113, 5080, 40 44, 4048Å) are observed. In case of high temperature class NaD lines are also observed, and in addition to above, MgO bands and continuous spectra (the latter are caused by solid metal oxide particles and K atoms) are found.

Main spectra of disturbance are NaD lines and continuous spectra. Purification of ingredients is very important to remove NaD lines and to obtain fine coloured flames. In case of high temperature class addition of ingredients of chlorine compound such as vinylchloride, ammonium chloride etc. to a composition is effective to decrease intensity of continuous spectra, and it is supposed that the metal oxide of solid phase is converted into metal chloride of vapour phase in presence of chlorine or hydrochloric acid in the flame, but this should be ascertained by further experiments of higher accuracy. Addition of shellac is also effective to weaken the intensity of the continuous spectra, decreasing the temperature of the flame.

The permeability coefficients and black body temperatures of flames of fundamental compositions are measured for reference. (Hosoya Fireworks Co. Ltd.)

トルエン硝化に関する考察(第一報)

(従来のトルエン硝化の考察)

(昭和33年11月6日受理)

山 末 健,吉田忠雄

(日本化薬株式会社厚狭作業所)

従来のトルニン硝化法に関して考察を行った硝化条件を区別するために、D.V.S. 硝酸比,混酸倍数,反応温度,原料仕込法,及び攪拌効果を反応変数として選び,その硝化反応及び製品純度に及ぼす影響に就いて考察した。従来実際に行われてきた方法,または文献に現れた方法から各硝化段階の反応変数を列記した。これから硝酸比,D.V.S. 等を Groggins の方法に従って算出し,この結果をヒストグラムで表わし,これと同時に硝酸化線を描いて,各硝化段階の反応変数の比較,検討を行つた。次いで反応変数の変遷と個々の硝化法の特徴等について論じた。

I. 概 論

1863 年, Wilbrand によって初めて調製された T

NT は、1902 年、独乙陸軍によって標準爆薬として 採用され、Dynamit A. G. Schlebusch 工場で工業的 生産を開始されてから 50 有余年を経た¹⁾²⁾。この間に トルエン硝化に関しては、理論的な数多くの研究が主 として反応機構に関してなされ³⁾,又、2 回にわたる 大戦中には、収率、生産量、品質向上及び安全操業の ための研究⁴⁾⁵⁾⁶⁾が行われ、夫々相当の成果を挙げてい る。

しかしながら現在までの硝化反応機構の理論も,硝 化反応速度式も⁷⁾⁸⁾⁹⁾¹⁰⁾,攪拌効率及び硝化酸組成が反 応の初めと終りで著るしく変化する工業的バッチ硝化 反応では,プラント設計にそのまま使用できない。一 方実験室規模で得られた文献の最適条件¹¹⁾も,攪拌, 冷却能力等の問題からそのまま scale up することは 難しい。個々のトルニン硝化法については、その採用 された理由、その方法の特徴等は記載された例が少な いので、ここでは従来のトルニン硝化法に関して反応 条件を列挙して将来の検討に資することとした。

硝化の主要な反応条件因子として. Groggins¹¹⁾¹²⁾¹³⁾ は次の3つを推している。即ち

- 1. 反依温度
- 2. D.V.S.(Dehydrating Value of Sulfuric Acid)
- 3. 硝酸比 (Nitric Ratio; N. R.)

D.V.S. は硫硝酸混酸を用いて任意の硝化を行う場合 目的の反応が完結したと仮定した廃酸中の硫酸と水の 重量比である。硝酸比 (N. R.) は、Groggins によ れば、硝酸と被硝化物との重量比と定義されている。 しかし本報告では比較を容易とするためにモル比を硝 酸比として使用した。米国における工業的トルエン硝 化では、コスト計算に便利なように、硝化段階を問わ ず、トルエン・ベースでの混酸中に存在する硝酸量を 硝酸比とし、同様な理由でトルエン・ベースでの碳酸 比(Sulfuric Ratio)を用いている(勿論、反応変 数 Process Valuable として D.V.S. も使用してい る)。

これらの反応変数は古くから考えられており、W. Macnabin は「トルエンのトリニトロ化段階における 収率と擬固点に影響を与える最も重要な因子は、反応 温度、反応時間、混験組成であり、混験組成については硝化が完了した廃酸中の硫酸分と水分の比及び硝酸 濃度が最も重要である」と述べている。

これに対し、1939年以来、種々のペンゼン誘導体ニトロ化の研究を I.E.C. 誌上に発表している。

Kobe 一派15)16)17)18)19)20)21)22)22)21)は最初 Groggins 流の反応変数を採り、その収率に及ぼす影響を調べて来たが、1951年に行つたクメンのモノニトロ化の実験17)で間一の D.V.S. の硝化酸を使用しても、被硝化物に対する硫酸の割合が変化すると、これに応じて収率が変化することを認めて、次のごときものを反応変数として採るようになつた。

- 1' 被硝化物に対する硫酸量
- 2' 混酸中の硫酸濃度(硝酸フリー・ベースの硫酸 パーセント)
- 3′ 反応温度
- 4' 硫酸濃度と反応温度の相互作用
- 5′被硝化物に対する硝酸量
- 6′ 混酸の添加時間
 - 7/ 反応器に予め入れておく硫酸の割合
- この2種の反応変数を比較すると、1と3′及び3と

5' は共通である。また Groggins の D.V.S. に混酸 倍数 (Mixed Acid Ratio)を加えると、Kobe の 1', 2'と同じ内容を表わすことができる。徒つて Groggins の変数にない Kobe のそれは 4',6',7' となる。これ らは次のような実験結果に基いている。即ち、フラス コ中で一定時間硝化を行つた場合、最高収率に対して 混酸中の硫酸濃度と反応温度の間には相関がある。 (4')。15分~85分の間に混酸の仕込時間を変えて、仕 込終了後、反応生成物を直ちに水中に注いで反応を停 止させ、収率を調べると一定仕込時間のところで最高 となる(6')。反応器中に予め硫酸を入れておき、この 割合を増していくと、50% 以上のところから 収率は 減少し始める (使用する全硫酸量は一変に保つてあ る(7')。

しかしながら、過去の資料を比較しようとするとき その数が少なく、実際問題として Kobe の変数、4′、 ア は検討出来ないので取り上げず、Groggins 流の因 子に就いて比較を行つた。この外 Groggins は第2版 (1938) では被硝化物の混酸中での溶解度を、第4版 (1952) では攪拌効果を加えているが、此処では攪拌 効果を論じた女献についても触れ、この外工業的硝化 では、原料仕込法、同時間、後反応時間等も重要な因 子と考えられるので、これらも記載する。

11. 各硝化段階における反応条件の検討

トルニンを硝化してTNT を製造する場合,現在三 段硝化が一般的であり,有利であるといわれている。 此処では、モノニトロ化,ジニトロ化,トリニトロ化 の各硝化段階における反応条件の比較検討を行う。

硝化温度

一般輸としては、過硝化物の生成、酸化生成物の増大、危険性の増大等の問題が解決されれば、冷却効率向上、反応時間短縮に対して高温硝化が有利である。しかし従来行われてきたバッチ法では冷却能力、攪拌能力に制限があり、硝化温度を上げて、反応速度を増しても、これに伴う局部反応(acic to oil 方式の場合)、仕込を一定時間以内におさえることができないための過硝化物の生成(oil to acid 方式)及び後述する変色等の不利な条件が起つてくる。一方各段階を通じて反応速度は温度が 10°C 下ると約 ½ に減少するので735710353 下方の硝化温度にも 展界がある。しかしモノニトロ化に就ては、反応速度よりも冷却効率が問題となる。

文献に現われた硝化反応温度をヒストグラムで示す
と図1の如き分布を示す。主要な反応の行われる時期

を考慮して、モノニトロ化及びジニトロ化ででは仕込 温度、トリニトロ化では後反応(Cooking)温度を採 つた。

尚トリニロ化については、主要反応が仕込中に行わ れる方法が近年多くなつてきている。

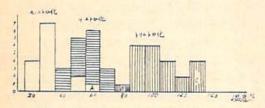


図1 各硝化段階に於ける硝化温度の分布

この図から従来行われてきた最も一般的な硝化温度 は、モノニトロ化で 30~40°C、ジニトロ化で 50~60 °C, トリニトロ化で 100~110°C, であることがわか る。これらの硝化温度が用いられてきた理由として次 のごとく考えられる。モノニトロ化の普通使用されて いる混酸中での硝化反応速度は非常に速く、従来工業 的に用いられてきた反応時間を採れば、更に弱い酸で バッチ硫化が可能なことは Mckinley-White の資料の から計算できるが、硝化器に使用される材質の耐蝕性 の問題から廃酸濃度に制限があり,一方では過硝化物 生成の問題,変色(stripping)の問題があるので、品 質を問題とする染料中間体製造のバッチ式モノニトロ 化では低温が望ましい。ここに冷却効率の問題からあ る程度以下の低温硝化は工業的に著しく不利となるの で、30~45°C という温度が採られてきたものと思わ れる。ジニトロ化の場合, 反応速度がモノニトロ化の それに比べて遅く, 均質なジニトロトルエンる得るた めには TNT の生成しない条件を選べばよいが、モノ ニトロ化と異り、廃酸中でも DNT 工業製品は50 数 °C の凝固点を有し、反応の殆んど完了するときには 反応温度は下方の制限を受ける。トリニトロ化では軍 用爆薬として TNT がある程度以上の凝固点を必要と し、これを得るためには現在のセライト精製法を用い る限り、未硝化 DNT の残らないことが必要であり、 また反応速度が最も遅いから高温が望ましい。一方で は温度の上昇と共に酸化反応は更に著るしくなり、収 率の減少をもたらしい, 危険も増大する。

別の段階に要する硝化温度で重なり合っているものがあるが、硝化の目的によって未硝化物、過硝化物が 選じてもさしつかえない場合、及び N.R., D.V.S. 原 料仕込法、反応時間、その他の条件との兼合によよる ものであるう。例えば、Aは第1次大戦以来米国で採 用されている, TNT 製造用モノニトロ化温度¹⁾²⁶⁾²⁷⁾ で, 20数パーセントの過硝化物 (DNT) を生成する。 Bは 1910 年頃の方法で Schultz の特許によるものであり³⁴⁾, Cは日本陸海軍及び 1912 年の Langenscheitt の方法で独特のものである。

D. V. S.

図2は D.V.S. の分布をヒストグラムで示したもの である。但し分布を見易くするために横軸には対数目 盛を用いてある。

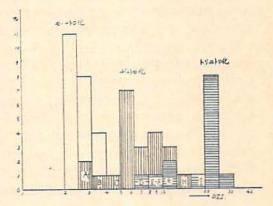


図2 各硝化段階に於ける D.V.S. の分布

トリニトロ化の D.V.S. については、廃酸の濃度が 著しく濃い場合、及び全酸分が100 パーセント以上の 場合には、その意義が失われるので、ここでは比較の ために D.V.S.>40 のものだけを記載した。従つてこ こに挙げたトリニトロ化の D.V.S. のヒストグラムは 文献に現れた D.V.S. の完全な分布を示しているわけ ではない。

各硝化段階の D.V.S. は硝化温度の分布より更に重 り合いの度が著るしくなつている。これらの理由とし ては、先づモノニトロ化の D.V.S. が硝化器の耐蝕性 に関して下方に限界があることが、 濃い混酸の使用が 制限を受けた時代のトリニトロ化の D.V.S. がジニト p化の D.V.S. の領域に喰込んでいること28)20) (多く の場合, 硝酸比を大きくとつて硫酸濃度低下による反 応条件の不利を補つている)28)29)30)31), 反応温度に較 べて D.V.S. は硝酸比との軟合でいじる余地のあるこ となどが挙げられる。この図から従来使用されてきた 最も一般的 D.V.S. は、モノニトロ化で 2~3, ジニ トロ化で 5~10, 廃酸の全酸分が 100 パーセント以下 のドリニトロ化で20~25,であることがわかる。全酸 分 100 パーセント附近の混酸を使用すると D.V.S. は この程度の値となり、100パーセント附近の混酸を使 用した例の多いことをこの分布が示している。

各段階の一般的な分布から外れた特異な例は次のご とくである。モノニトロ化については,

C. Davis の実験室的調製法 (TNT 製造用)²²⁾

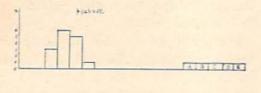
I. Fの方法の実験室的方法³⁵⁾

ジニトロ化については、

A. I, Gibson の異性体測定用実験密的調製法³⁶⁾

2. 1940 年頃の米国における方法³⁷, 硝酸比及び 反応温度が高い。

B. 独乙 Griessheim 工場 (I. G. Farben 染料中間体) における p-=トロトルオールの硝化法33)


H. 独乙 Schlebusch 工場の連続式パイロットブラ ント³⁹⁾

トリニトロ化については、

D. 1911 年, 長谷川大尉の実験⁴⁰, 硝酸として 70 バーセント HNO₃ を使用。

E. 1891 年 Hatissermann による¹⁹¹。硝酸として 90~92 パーセント HNO₃ を使用。

G. 美川一雄 "爆薬学" による")。

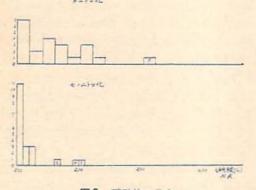


図3 硝酸比の分布

硝酸比は、硝化温度、D.V.S. と異り、繰りの段階 の間にそれ程はつきりした差異はない。モノニトロ化 では、大部分 1.10 以下であるが、更に難しくみると、 acie to oil 方式及び二槽式連続硝化方式では近年 1.02 ~1.05 が一般的である。(表1) ジニトロ化では相当広い分布の幅をもつているが, oil to acid 方式を除いては、新しい文献に現れた工 業的方法においては、1.10以下が多くなつている。旧 い方法ではモノニトロ化、ジニトロ化、トリニトロ化 の順に硝酸比が増しているが、トルエンのニトロン化 を可逆反応と考えた点と関連して興味深い⁵¹⁴)。

トリニトロ化では、反応を速く完結点にもつていく ためと、酸化反応及び高温による気化で多量の硝酸が 失われるために、大部分の方法が 1.4~2.2 の範囲内 にある。特異な A,B,C,D,E 等はいづれも強い酸を 用い得なかつた時代のもので現在工業的には用いられ ていない。F.H.I. は実験室的誤製法、Gは oil to acid 方式である。

反応時間

反応時間を正確に記述した例は少なく、一般的な比較はできない。しかしトリニトロ化を除いては、化学 反応速度は相当速く、モノニトロ化で 24 分、ジニトロ化で 18 分で反応を事実上完結させている例があり、 文献の硝化時間はその他の因子によつて支配された値である。多くの場合、攪拌効率、気湿とこれに伴う水温、冷却水量、反応温度、冷却能力等によつて変るので、仕込時間は記載されていない。 TNT 製造の場合には、モノニトロ化、ジニトロ化の時間はトリニトロ化の cycle time に合わせて設計されている。 染料製造のためのモノニトロ化、ジニトロ化ではできるだけ均質なニトコ化合物を得るために比較的温和な条件下に長時間を要して硝化を行つている380に)。

原料仕込法

硝化反応速度は大きく混酸組成の影響を受け、主要 な反応は酸相中で行われるという事実から、混酸組成 と廃酸組成の著るしく異る工業的バッチ硝化では原料 仕込法が反応期間を通じて平均硝化速度に影響を与え ることが容易に想像される。

Hougen-Watson⁽³⁾ は Lewis-Suen⁽⁴⁾ の実験結果 を基に、これに攪拌効果を加えた次の式を芳香族硝化 に対して、反応速度式として提出している。

$$\gamma_a = \frac{k a_{\text{Na}} a_{\text{Ta}}}{1 + \frac{k}{k_{\text{eff}}} \cdot a_{\text{Na}}}$$

7a : 酸相中の硝化速度

k : 反応速度定数

axa:酸相中の硝酸アクティヴィテー

ar..: 有機相中のトルエンのアクティウイテー (今濃度)**9)10)

kar: kと同じ次元 (dimension) の物質移動係数

工業的トルエン箱化反応では、仕込申に反応が進行 して、しかもその仕込法によって反応中の axa, aro の変化の度合が異なり、7a は当然仕込法の影響を受 ける。一方上式から過硝化物の生成に対してある程 度の知見が得られる。異性体の生成速度に関しては次 のごとき知識が文献から得られる。

ko-MNT : km-MNT : kp-MNT

÷62:4:34 36)45)47)1)(2)

k₀→DNT : k_m→DNT : k_p→DNT

=7.5:3.2:3.9 25)46) (3)

これに対して

$$k_{MNT}/k_{DNT} = 800 \sim 5,000$$
 ¹⁰⁾
 $k_{DNT}/k_{TNT} = 10^{\circ}$ ²⁵⁾⁴⁸⁾ (5)

となり、異性体の生成反応速度の整は、モノー、ジートリーニトロ化反応速度に対して無視できるから、トルエンのモノニトロ化における DNT の生成速度比率 (7DNT/7MNT)は

$$\frac{7 \text{ DNT}}{7 \text{ MNT}} = \frac{k_{\text{DNT}} a_{\text{HNT}} (1 + k_{\text{MNT}} \cdot a_{\text{N}} / k d_{\text{-MNT}})}{k_{\text{MNT}} a_{\text{T}} (1 + k_{\text{DNT}} \cdot a_{\text{N}} / k d_{\text{-DNT}})}$$
(6)

で表わすことができる。但し硝化反応機構が異なれば モノニトロ化とジニトロ化で an の値が異なり上式は 成立しない。一方

と考えられるから、攪拌が不足すると過硝化物の生成 を増し、一定の場合には、その比率は ax の大きい程 大きいことがわかる。以上の解析によつて、原料仕込 法が過硝化物生成比に対しても影響することが期待さ れるが実験的にも確められている。

従来行われてきたトルニン硝化の仕込方式は大体次 の5種に分けることができる。即ち

- 1. 混酸を被硝化物中に仕込む。acid to oil 方式
- 2. 被硝化物を混酸中に仕込む oil to acid 方式
- 3. 連続硝化における被硝化物と混酸との同時仕込 方式
- 4. 硝酸または混酸を、硫酸に溶解させた被硝化物 中に仕込む方式
- 5. 被硝化物を廃骸に浮かして、これに混骸を仕込

む方式

モノニトロ化及びジニトロ化では acid to oil 方式 が、従来一番多く用いられてくる (表1,2)。 しかも Kobe 等のジニトロ化の最適条件を得るための実験以 外は相当長い時間をかけている。この長時間仕込につ いて考察すると、仕込まれた混骸は、先に仕込まれて 反応した酸中に分散し, 廃酸組成に近い組成で反応に 関与する。(6) 式における an は小さく, また反応を 通じての平均 ara は大きいので、過硝化物の生成制 合は理論硝酸量 (N.R.=1) を用いることによつて最 低値におきえることができる。第1次大戦中の I. G. 社 Griessheim 工場における、p-ニトロトルエンの硝 化法13)はその代表的な例である。また反応が廃骸に近 い酸中で酸の仕込速度と平衡を保つて進行するので、 廃酸の硫酸と水の比で定義された D.V.S. はかなりの 意義をもつてくる。しかし一番弱い状態で酸を使用す るので,必然的に長時間を要するが,この他にも二, 三の問題がある。モノニトロ化では、変色を起すので あまり高い D.V.S. の酸を使用すると, N.R.=1 とす ることに問題があり、また反応は仕込酸の影響を直接 受けないで、仕込まれた酸は一度廃酸中に稀釈されて 反応に与るから、仕込による温度調節が難しく、往々 仕込み過ぎの危険が生ずる。この場合、冷却能力に余 裕がないと温度が上り過ぎる。

被硝化物を予め硫酸または廃酸と共に硝化器に入れておき、これに混酸または硝酸を任込む方式は、従来 急激な反応を妨げるという理由で推奨されてきた。そ してトリニトロ化はこの方法が多く採用されてきた (表3)。この方法の任込中の状態は acid to oil 方式 と似たものと想像されるが、Kobe 等によれば収率が 普通の acid to oil 方式に較べて稍落ちる16/19/21/21)。

第』次大戦中、特に米国において TNT の大量需求 に応じてトリニトロ化の反応時間を短縮するために、 oil to acid 方式が採られるようになつたり。独乙でも oil to acid 方式に切替えられたことが報告されてい る¹⁰。Wright は、この方法がより有効に混酸を利用 し、芳香族硝化理論に適つている。としている²¹。

この方法は高硝酸濃度、高硫酸濃度の混酸中に比較 的高温で被硝化物が仕込まれていくので、仕込んだと ころから硝化が進行し、混酸中の未反応被硝化物の量 は常に少ない。従つて反応の管理が容易であるという 利点を有し、米国の Plum Blook 工場ではこの方法 を採用することによつて、従来熟練者にしかできなか つた TNT 製造作業を戦時中の青年の不足を補つて老 人や婦人にまで解放した。さらにこの oil to acid 方 式は、従来必要とされてきた、廃骸に硝酸を加えて混 酸とする混酸製造器(Spent Acid Fortifier)を不要 とした。これに関し Papazoni は次のごとき特許をと つている⁵¹。即ち、モノニトロ化、ジニトロ化の酸は 混酸製造器を使用せず、硝化器中に廃酸を受けて、こ れに硝酸を加えて製造する。この結果、混酸製造器及 び圧搾空気による送液器は不要となり、TNT 製造上 の在険は著るしく減少する。何故なら、適去における TNT 製造中の事故の原因は、多く圧搾空気 送液器 (Blow Case) からきていたからである。このために モノニトロ化、及びジニトロ化では oil to acid 方式 を採つている。

一方 oil to acid 方式は、モノー及びジニトロ化に おいては、仕込初期において、硫酸濃度及び硝酸濃度 が高く、ax は大きく、また amnt/ar が大きいので、 (6) 式からわかるように過硝化物生成の可能性が大き く、全仕込期間を通じて acid to oil 方式と比較すれ ば、過硝化物生成量の多いことは明らかであり、 kmxr/kpxr の比較的小さいモノニトロ化において著 しい。

acid to oil 方式と oil to acid 方式の一般論的比較を行ったが、仕込速度を増していき、その極限に達すると両法の別はなくなる。温度、攪拌一定で操作する場合、平均総括反応速度は瞬間的に仕込んだ場合が一番大きい。この例については Hougen-Watson(3)がベンゼンのモノニトロ化について 99.5% 転化率を得るための所要時間の計算例を示しているが、工業的トルエン硝化では、普通の硝化温度でこのような方式を

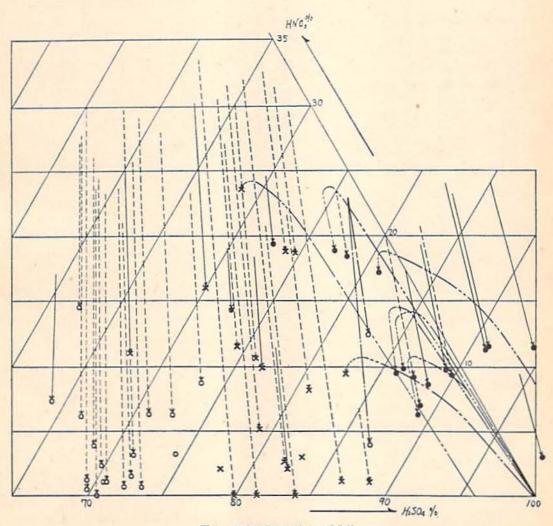


図4 各硝化段階に於ける硝化線

表1 モノニトロ化

										2001		- 1	-	14
トルエン	混	酸		混	酸	組	成		仕	込	後」	夏 応	総反	0.161
量	量	倍数	H ₂ SO ₄	HNO ₃	HNO,	H ₂ O	N.R.	D,V,S,	温度	時間	温度	時間	時	[1]
	-1-	2.49	57.6	30.0		12.4	1.09	2.84		_	-			
61kg	183kg	3.00	55.8	28.0		16.2	1.23		40°C		40-+80°C			_
50kg	150kg	3.00	61.0	28.3		10.7	1.24		30~45		80 60	1.00		_
-	_													_
									<30		<30			
350kg	1,050kg	3.00	61.0	28.3		10.7	1.24	3.64		hr min	80			
200kg	575kg			29		12	1.22			8.00	6U	2.00		
ナルエンベト ーロール*				20.9		16.9				6.00~			2	30~
1,270kg	2,600kg				0.2			2.74	35	8.00	35	0.30		8.30
	-	-		16.5	Ī	16	-	-		-	50~60	-		-
35gr	100gr	2.86	58.7 55	23.8	-	17.5	1.00	-		-	-			
100gr	441gr	4.41	65.3	23.3		11.4			30~40	1.00~	30	-		=
500gr	1,378gr		56.0	27.2	-	16.8	1.95	1		1.30	40	0.30		2,00
750kg	4,250kg	5.68	-	-	-	-	-	-	35	-	20→40	0.40		5,40
200gr	600gr	3.00		23,4	-	16.2	1.02	2.66	30	-	50	-		-
-	-	3.00	57.4 \$76	26.1	=	16.5	34.00			-	50	-	II.	-
590kg	50gr	-	187	{ 4		9	1.32	8.60	50→55	-	80	-		-
10gr MNT	10gr	6.0	(10	{23 23	T	1	2.01		50→55	-	55	0.10		-
5,000kg	-	2.50	56.0	28.0	-	16.0	1.02	2.34	45~40	-	55	0.10		=
1,000 <i>l</i> /hr	-	2.50	56.0	28.0	-	16.0	1.01		35~40	-	35~40	-		5~6
3,0001	-	-	52~56	28~32	-	20~12	1.02	1.87~ 2.67	25	8.00	35~40	-		-
-	-		,	,	-	,	0	,	-	-	35~40	2.00	1	0.00
-	-	-	62	18.0	3.0	17.0	1.05	2.84	20~30	-		-		-
-	-	6.87		-	-	-	-	-	<60	-	-	-		-
-	-	-	1	18	81) 142)	12	-	-	-	-	60	-		0.25
1,600lb 450kg	1,355	7.80	1	14	21) 172)	19	1.63		55 25~30	0.16	-			-
ноокд	kg	0.01		24.6				-			55	0.08		0.24
_	-	2.93				17.0	1.03	2.49		8.00~	30	-		-
550kg		3.00				17.7		-	35	10.00	_		1	0.00
∫2,603	\$7,905	3.04		1		12,7			35		-	-		-
\gr/hr ∫ 877	∫2,380	2.71									-	-		-
\gr/hr \ 865	\gr/hr \f2,725										-	-		-
\gr/hr 600		0.10	1							-	30→45			-
{ kg	{ kg	0.01	By B			17.1	1.036	2.41	30~35	8~10	45	1.00	9.	~10
-	-			14.5	1)12.5	-		-	<20	-	-	0.00		-
1,600lb	11,000lb	6.88	50.5	-	2) 2.5	20.0	1.46	2.21	55	-	55	0.03~		-
-	-	-	58	19	-	23	-	-	-	-	-			-
*					-	-	-	-		-	-	-	-	-

仕 込 法	操作法	収率	規模	国籍	年代	文献	備 考
acid to oil	batch	_		和	1908	(63)	
,	,	100%*	中規模実		1911	(40)	acid to oil 方式が有利であると結論している。* 相当量の DNT が生成している
		,	験	,	,	(29)	ようである。
,	,		工場	0.00	,	(2)	Schlebnsch 工場 混酸は圧搾空
				独			気でトルエン中に吹込まれる。
	*		,	仏	,	(64)	
,	*		,	H	1914	(65)	Cycle time. 2.111
,	,	94%	,	独	1915	(66)	Cycle time: 24hr
,	,	-	,	英	1920	(5)	{* トルエンベトロール (toluene-petrol) のトルエン含有量は 55~60%
,	,	-	1	独	1921	(67)	
2	,	FA 2 34	フラスコ	英	1922	(36)	CARLES MEDICAL TRANSPORT
*	*	殆んど 100%	工場	独	1929	(41)	
,	,	-	フラスコ	米		(32)	
1	,	95%	,	日	1940~	(68)	
	*	-	工場	1	1	(30)	
1	1	-	フラスコ	1	1	(69)	
25 2 40 -11	,	-	工場	1	1914	(31)	
M. A. to oil on W. A.	*	-	,	米	1942	(33)	{特殊仕込法:廃酸上にトルエンを浮かし 二相間の界面を乱さないようにゆるい攪
,	*	=	フラスコ	1	1943	(35)	【拌を行いながら混酸を散布器から仕込む
Simultoneous	Semi- Continuous	94~98	工場	独	1945	(70) (50)	Krümmel 工場 Prenitrator 2 基 で=0.30
	2	-	,	,	1	(39)	Contraction of the contraction o
acid to oil	batch	-	,	,	,	(38)	
Simultaneous	Semi- Continuous	0 =	,	1	,	(38)	
,	Continuous		,	和	1948	(71)	
oil to acid	bach		,	*	1945	(6)	
M. A. to oil	bach		,	1	1948	(72)	(1) nitrobody
in W. A. oil to under acid			,	,	1950	(27)	2) nitrosyl Sulfuric acid Cycle time: Cycle time: 40min
acid to oil	2	=	,	日	1951	(42)	モノニトロ化熔砂由にトルモンた件
Simultaneous	Continuous	_	,	独	1955	(49)	TOTAL CONTRACTOR OF THE PERSON
acid to oil	batch	-	,	日	,	(42)	
,	,	_	,	米	1956	(9)	
Simultaneous	Continuous	100%	フラスコ	,	,	(10)	
15 × 1	,	98%	,	,	,	(10)	
	,	100%	,	,	,	(10)	1.34 97.3 1.4 3.66 95.8 0.6
acid to oil	batch	-	工場	日	1957	(42)	0.775 97.6 1.7
,	,	_	,	ベルギー	1933	(73)	
oil to acid	,	_	,	*	1958	(13)	
,		-	,	,	,	(13)	
		-					

とると、最初の反応が著しく速く、反応熱を除去し得ないので実際に行われていない。トリニトロ化では、 見掛上の仕込は、acid to oil, oil to acid, 硫酸溶解 の方式をとつても、実際は仕込中には殆んと反応が起 らず、仕込終了後、温度を上げて反応させる方式が旧 く用いられてきた。図4は、これらの仕込法によつて 分類して仕込中の酸組成の変化を考慮した、従来行わ れてきたトルエン硝化の硝化線である²³。

○×●は夫々、モノー、デー、トリニトロ化の計算 された廃酸組成を表わし、線は仕込法によって分類し てある。

連続法は廃酸組成が硝化組成なので硝化線は示してない。

実際の硝化反応については、硝酸の損失があり、硝 化線は計算値より伸びるのが普通であるが、トリニト 中化ではこの外、硝酸が相当酸化反応に消費され、硝 化線は左方にづれる。 acid to oil 方式では廃酸組成 附近で、oil to acid 方式では硝化線の全領域で反応 が行われることを理解すれば、従来の工業的硝化法が いづれも比較的合理的な組成の領域で反応を行つてい ることがわかる。

押拌効果

トルエン硝化の攪拌効果の定量的な取扱いは、モノ ニトロ化について、Kobe ⁹⁰によつてなされたのみ である。彼等は攪拌効果に関する特性値を算出してい るが、基礎となる理論式(1)は次のごとく導かれたも のである(1)。

硫硝混酸による二相硝化反応において、主反応は酸 相中で起り、一方酸相中での反応は活性硝化剤(NO_2 +、 または NO_2 + carrier) とトルエンとの二分子反応と 考えてよい。化学反応速度では

$$\gamma = \gamma_a = k_a a_{Na} a_{Ta}$$
 (8)

222

7a : 酸相中の反応速度

aNa: 酸相中の活性硝化剤アクティヴィテー

ara: 酸相中のトルエンのアクティヴィテー

ka: 反応速度常数で硫酸濃度及び温度によって変化する。

一方物質移動の速度式から

$$a_{\text{Ta}} = K_{\text{T}} a_{\text{To}} - \frac{\gamma_a V_o}{k_{\sigma a_s}} \tag{9}$$

2212

Kr:有機相,酸相間のトルエンの分配係数

aro: 有機相中のトルエンのアクティヴィテー

ka:トルエンの物質移動係数 an:単位体積当りの接触面積

Va:酸相の容積分率

が導かれ、これを(8)に代入すると、

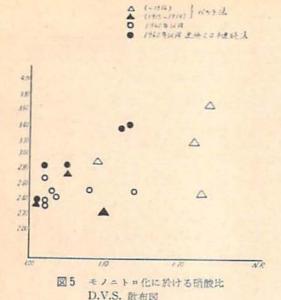
$$\gamma_a = \frac{k_a K a_{\text{Na}} a_{\text{To}}}{1 + \frac{V_a k_a}{k_a a_{\text{Na}}} \cdot a_{\text{Na}}} \tag{10}$$

となり.

$$k_{\sigma}K \rightarrow k$$
, $k_{\sigma}K \rightarrow k_{dT}$

の置換を行うと,

$$\gamma_a = \frac{ka_{\text{Na}}a_{\text{To}}}{1 + ka_{\text{Na}}/k_{\text{dT}}} \tag{1}$$


が得られる。この式は k=kaK, 及び kar が硝酸濃度 の変化によって変化することも考えられ、完全な適用 は疑問であるが、近似的、または定性的な適用は有力 な方法と思われる。

Ⅲ. 各 論

モノニトロ化

モノニトロ化の反応条件は表1の如くである。これを概観すると、初期において用いられた硝酸比の1.22~1.24という傾は第 I 次世界大戦を経て減少し、acid to oil 方式の工業的バッチ法では 1.02~1.05 が普通となつている。モノニトロ化の硝酸比と D.V.S. について散布図を描くと図5の如くなり、この二つ条件の間には正相関がみられる。

この傾向は、パッチ法については、吾々がトルエンのモノ硝化に当つて、時々経験する変色(Stripping)の現象と密接に関係するものと思われる。トルエンモノニトロ化における変色は、硝酸の不足した場合 D. V. S. の高すぎる場合、仕込時間の異常に高すぎる場合、仕込温度の高すぎる場合等に起る。この変色は、主としてトルエンのスルホン化によるものと考えられ

るが、芳香族化合物のニトロメタン中でのスルホン化 の速度について、Stubbs 等**) は次の速度式を提出し ている。

$$Rate = \frac{k_1(A_1 \setminus A)}{(x+x_0)y_0} - \frac{k_1x(A)}{1+\beta x}$$
(11)

ここに

[A]:硫酸濃度

[B]:被スルホン化芳香族化合物の濃度

x : 反応主成水 k, k₂, x₀, β: 常数

これから D.VS. が変色に影響を与えることが理解され硝酸も水と同様スルホン化の逆反応,即ちスルホン 基のニトロ置換に関与すると考えられるから,N.R. の影響も理解できる。一方同じ署者によれば,トルエンのスルホン化速度は p-ニトリニトロトルエンのそれの約 20 倍もあるので,硝酸が不足し,未硝化トルエンがある程度以上段溜した場合にも変色の起ることがわかる。このようなことから,高 D.V.S. に対して高硝酸比という実際上の処置がとられたものと思われる。

1940 年代初期に行われていたと思われる方法叫は、 モノニトロ化に D. V. S. = 8.6 という混酸を使用して いるが、これは次のごとき特殊な方法を採用してい る。即ち、 D. V. S. 8.6 程度のモノ廃酸上にトルニン を浮かし、これに H₂SO₄ 76%, HNO₂ 23%, H₂O 1% の強い混酸をスパイダー型の仕込口から仕込み,50 ~55°C で反応させる。普通の攪拌を行えば、直ちに 硝酸の脱取が行われ、変色するので、油相と酸相の界 面を保ちたがら、ゆるやかに攪拌を行う。この方法は その後 du Pont 社の Castnerがが、過硝化物主成の 少いニトロ化法として、米国特許を得ている。しかし この方法は、それに適する設備がないと舞しく、 Meyer⁵⁶はその実験室での調製法として、工業的なそ れの N.R.=1.3 の代りに、N.R.=2.01 を用いている。 しかしその後の文献にはこの方法に現れず、その後 oil to acid 方式がこれに代つたものと想像される。

acid to oil 方式では、硝酸比は時代と共に小さい 値が多くなつているが、この傾向は、技術の進歩と共 に経済的見地と、脱硝の問題から、当然の結果であ る。反応温度は30~40°Cが一般的であり、米国の短 時間硝化法では50~60°Cの高温で反応を行い、モノ オイルの比重が1,2000となつたところを反応の終点 としている。

トルエンの連続硝化法については Mckinley-White が装置設計の資料として反応速度を測定, 検討してい るが,使用した混酸組成がジニトロ化合物を生成し ないような弱い混酸なので,利用するには反応速度が 小さ過ぎ,材質としてステンレス以外使えないという 点で,設計資料としては興味がうすい。第2次大戦中 独強では所謂半連続法(semi-contimous process)が 用いられたが,この方法の特徴は酸組成の強い前硝化 器(prenitrator)中では効果的な攪拌を与え,過硝化 物の生成をおさえて,製品は未硝化トルエン,過硝化 DNT 各 1% 程度といわれている。

Hougen-Watsonはベンゼン硝化器設計に関する考 祭の中で、連続法とバッチ法の比較を行い、一定転化 率を得るための所要硝化器容積は、一段式連続硝化法 ではバッチ法のそれの1,000倍を要する、としている。 所要容積を小さくするためには、向流システムの多段 連続式とすることを推しているが、バッチ法では、現 在仕込によつて反応を制御しているので、この議論は モノニトロ化の場合、当てはまらない。

Meissmer⁴⁹ は I.E.C. 誌上に自らの連続硝化装置 に関する総説を出しているが、この中で連続操作に関 する必要条件として次のものを挙げている。

- 1. 原料の正確な秤量と仕込
- 2. 製品の正確にして連続的な測定
- 3. 与えられた容積の装置中での最大硝化速度を計 算するための方法と資料
- 4. 最終製品を連続的に分離するための簡単な装置

表2 年二十四化

MNT	混	酸		混	性处	組	成		仕	込	後反	応	総反応
量	量	倍数	H ₂ SO ₄	HNO ₃		7.00		D,V,S.	温度	時間	温度	時間	時間
P-NT		2.25	63.5	30.5		6.0	1.49	5,35	60~65		80	0.30	_
75kg	22,5kg	3.00	-	32.7		1.9			60~70	-	80	1.00	
トルエン	85.2	3.00	442.00			7.7	1.88				90	2.00	
20 520	15.60			31.4		1.6	2.15		60~65	8		2.00	
280	9.00		72.7	21.6		5.7	1.51	6.74		_	80	2.00	
200			- "			-		0.74	05 81	_	80	_	
F0	010-			-		-							
50gr	240gr		-			11.7	1.20		60~65		70	0.30	_
	-	2.20		30.0		5.0	1.44		-		90	2~3	_
トルエン	-	1.68		31.4		4.9	1.15		60~65		80~90	=	-
50gr	218gr	3.36	73.6	24.4	-	2.0	1.55		50 95		90~100	2,00	-
-	-	3.00	60.0	25.0	-	15.0	1.63	3,10	57	1.30	90	1.00	-
	-	3,54	76.0	23.0	- 2	1.0	1.32	8.60	45 80	-	80	0.30	-
トルエン 10gr	50gr	3.33	76.0	23.0	-	1.0	1.12	11.0	45 83	-	83	0.30	-
300gr	-	-	61.4	26.7	-	11.9	-	-	50	-	100	-	=
5,000	-	=	-	-	-	-	_	-	30→60	_	70	-	_
P-NT 4,000	5,500	1.38	60.7	33.5	-	5.8	1.00	3.95	55→70	4.00	70→90 90	1.00	7.00
55lb/hr	-	=	廃酸 (83)	(3)	-	(6.0)	- 1	13.83	75	-	-	-	=
50gr	230	4,60	93.7	31.8	-	4.5	3.20	8.57	_	-	-	-	-
_	-	-	磨酸 (78)	(2)	-	(1.5)	-	5.20	40←50	-	_	-	-
-	-	-	50	20	121) 122)	6	-	_	_	-	-	-	-
トルエン 1,600lb	12,500lb	5.24	54.0	13.0	81) 172)	8	2.20	7.30	82~85	0.10	85	0.8	0.18
670	1,025	1.53	64.6	32.0	-	3.4	1.07	5.40	50	-	80~90	-	-
-	-	4.10	85.0	6.6	-	8.4	1.20	8.65	55	_	=	-	-
O-NT 200gr	342	1.71	65.8	26,9	-	7.3	1.00	4.41	50	0.15	50	0,20	0.35
P-NT 200gr	442	2.21	71.3	20.8	-	7.9	1.00	5.55	65	0.15	65	0.20	0.35
500	1,190	1.60	68.7	29.7	-	1.6	1.03	6.99	50~55	5~6	85	3.00	8~9

(MNT→DNT)

-							The state of the s
仕 込 法	操作法	収 率	规 模	四鄉	年代	文 献	備考
acid to oil oil	batch	-	フラスコ	独	1981	(28)	
,	,	_	中型実験	日	1911	(40)	
oil to acid	,	86%	,	,	1911	(29)	
acid to oil	,	-	工場	,	1914	(65)	
,	,	90~93	,	独	1915	(66)	
-	,	_	,		1921	(67)	
oil to acid	,	91	フラスコ	英	1922	(36)	
acid to oil	,	100	工場	独	1929	(41)	
	,	,	,	2	-	(58)	
M.A. to oil in S.A.	,	,	フラスコ	*	1941	(32)	
acid to oil	,	,	工場	,	-	(37)	
,	,	,	,	,	1942	(33)	
,	,	,	フラスコ	,	1943	(35)	此処で使用するMNTはDNTを相 当含むものと思われるので実際の N.R. はずつと大きいものと思わ
,	9	2		日	-	(69)	ha.
N.A. to oil in Tri W.A.	,	,	工場	独	1945	(50) (70)	Krümmel 工場
acid to oil	*	*	,	,	,	(38)	Griesheim 工場
simultaneous	contimuous	.2	中型実験	,	,	(39)	Schlebusch
N. A. to oil in S. A.	batch	high	フラスコ	*	,	(74)	
simultaneous	contimuous	-	工場	和	1948	(71)	
-	batch	-	,	米	,	(72)	Nitrobody nitrosilsulfuric acid
oil to acid	2	-	,		1950	(37)	cycle time: 40min
acid to oil	,	-	,	日	1951	(42)	Lynna Re
1.5	,	90%	,	1/4	,	(57)	
	,	100%	フラスコ	*	1955	(22)	
	,	98%	,	,	,	(22)	
,	*	-	工場	B	1957	(42)	

表3 トリニトロ化

											30	3 +	y = 1	12 115
DNT	桃	酸	進		Ē		ř	使特	性 値		仕	込	後月	芝 応
量	帝	解	量	H ₂ SO ₄	HNO ₃	H ₂ O	混酸 倍数	N.R.	D.V.S.	硫酸	温度	時間	温度	時間
2,4-NDT 1.0	95~	96% 4.0	15	-	90~92	8~10	5,50	3.94	9.23	9.10	-	-	90~95	4~5*
トルエン 20kg	66 186	Be'	69.87 kg		70.0	30.0	6.40	3.68	7.70	88.5	-	-	90~95	3~5
2.4-DNT 100kg		-	500	94.0	9.8	- 3.8	5.00	1.44	00	100.2	40~45 °C	-	90	-
液体DNT 500		- 2	1,430	82.1	20.9	- 3.0	2.86	1.73	2.38	99.6	70-+90	=	130	- 1
69.2		=	415.2	75.0	23.5	1.5	6.00	4.07	21.3	95.5	-	3	130	3
-		-	11,400	78.4	17.0	4.6	-	-	-	-	-	-	-	=
-		-	-	78.4	17.25	4,25	-	-	-	-	-	-	-	-
-		-	-	79.5	17.8	2,7	=	-	-	-	45→66	0.50	66→110	3,30
-		-	-	81.0	1.70	2.0	_	-	-	=	=	-	-	-
1,000		-	3,329	82.6	19.6	- 2,2	3.37	1.90	11.0	99.3	-	7	=	-
500		-	1,500	80	20	0	3.00	1.74	24.3	96	95	-	95~100	-
980	1	,000	2,650	76	24	0	3.72	1.88	20.8	95.4			100~110	20.00
-		-	=	-	-	-	-	-	-	-	40~30	2.00	100~115	2.00
300		-	1,500	80	20	0	2.50	1.46	20.4	95.3	100~115	-	120	1.30
1.0		1.5	1.2	56	42	2	2.70	1.46	20.1	95.2	90~100	-	130	=
1,000	. 1	,930	1,600	55.8	42	1.7	3.53	1.94	21.7	95.6	90	-	130	-
1,200	2	,200	3,700			3.0	4.91	3.56		91.0	90	=	120	=
2,000		,640	3,000		43	1.0	3.32	1.94	21.7		80~100	2	130	6
1,300lb		um 00lb	3,500	43	57	0	27.0	2.25	54.1	98.3	80~95		104	-
180P	8	800P	3,00P	_	98	2	5.65	4.52	10.65	91.4	85~100	-	90-+130	-
TNT 4,000		2	-	82	24	- 6	2.5 ~ 2.6	1.75	00	102.4	80	3.30	96	2,30
-		=		85	24	- 9	.=	=	00	106.7	74~78	3.00	98	2.00
-		_	11.00	85	24	_ 9	2.5	1.75	. 00	106.7	83	2.00	95	95
MNT 255lb/hr			187lb/	82	22				21.0					
(200)			693lb	92	100000	(3)	3.44	2.19		101.4	90	-		
(200)			hr	_			_			_	95			_
		_	-	施酸	(6)	(3)	_	_	27.0	96.5	55~85		-	
	30~	40%		(81)		0		_	_	_	_	-	_	-
トルニン		um _	_	82.7			2.69	1.81	00	102.8	85~90	0.30	110	0.35
1,600lb		_		78		0.3	_	1.74		-	95.3	_	_	-
					And a second	1.72		720200	COAS		1			

(DNT→TNT)

(
総反応 時 間	仕 込 法	操作法	硝化回数	収 率	凝固点	規模	国种	年代	文献	伽考
	M.A. to oil in S.A.	batch	3	Di→Tri 84	79°	フラスコ	独	1891	(28)	* ガスの発生がなくなる迄時々攪拌 する。
	,	,	,	トルニン →TNT 67(精)	80.5~ 81.5	中型実験	日	1911	(40)	
	acid to oil	,	,	_	-	,	独	,	(64)	
-	. ,	,	,	-	-	工 場		1912	(75)	
4	. ,	,	2	→TNT	- 4 2	,	日	1914	(65)	
- 1	oil to M.A	1	,	58(精)		,	英	1915	(5)	
4.50		,	1	-		,			(5)	
4.20		,	,		80.1	,	*	1918	(5)	
-		-	,	-	_	,	,	1918	(5)	
-	oil (80°C) to acid	,	,	Di→Tri 38	77~79	,	米	1927	(76)	
-	acid to oil	,	,	-	_	,	独	1929	(41)	
	M.A. to oil in S.A.	,	-	Di→Tri 87(粗)	-		,	1933	(58)	
3.30	M.A. to oil in	2	,	-	_	フラスコ	米	1941	(32)	
	M.A to oil	1	,	89	-	工 場	,	-	(37)	
	M.A. to oil in S.A.		2	_	_	,	H	-	(59)	
*			,	-	_	,	,	-	(60)	
7-	, -	,	,	=	_	,	,	=	(30)	
8			,	-	-	,	,	-	(61)	
122		,	3	-	72(粗) 80.2(精)	,	*	-	(33)	
-	N.A. to oil in S.A.	,	,	-	_	フラスコ	П	1914	(31)	
	M.A. to oil (旧) oil to acid (新)	,	,	トルエン →TNT 81	80~80.5	工場	独	1945	(50)	Krümmel 工場
6	M.A. to oil	,	3	81	80.4 ~ 80.5	,	,	,	(39)	Allendorfusch 工場
6	oil to acid	,	. 1	81	80.4 ~ 80.5	2	,	,	(38)	Schlebusch 工場
-	simultaneous	continuous	4	85	80.3	中型実験	,	,	(77)	二槽式連続硝化
4.208	M.A. to oil in		,	-	17.		-	-		Plum Bearle - to
1.20*	oil to M.A.	batch	3	-	80.2	工場	米	1945	(6)	Plum Brook 工場 *Cycle iime
-	M.A. to oil	continuous	2	-	_	,		1948		
	in S.A.	batch	*	-	-	,	米	1849		
1.05	oil to acid			-	80.3	,	1	1950	207	
	-	,	1		3=	,	1	1956	(9)	
-								-	-	

5. 連続洗浄及び乾燥のための方法と装置

なお未硝化物,過硝化物の割合は,夫々1%以内であるとしている (Meisser の装置は併流二段式である)

Kobe*no) 等もトルエンの連続モノニトロ化装置を 試作して、反応速度の測定を行っているが、このデー タから一段連続硝化の最適条件が推定されて興味深い 表1に挙げたのがこのデータである。

ジニトロ化

チニトロ化の反応条件は表2のごとくである。この 表から、反応温度、D.V.S., N.R. をとつて散布図で 表わしたのが、図6である。ここで反応温度は棒の長 さで示してある。

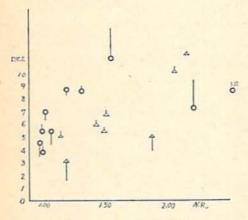


図6 ジニトロ化の反応条件

この反応条件は相当幅広く分布しているが、特殊のものを除いては近年になる程一般に小さな N.R. をとるようになつている。ジェトロ化はその前後に較べて、最も検討の遅れた領域である。これを相詳しく検討を行ったものには Kobe¹³⁾ の研究があるのみである。 Kobe は彼の提唱する反応変数を変えて、収率の変化を調べたが、ここに挙げたのは、硝酸比1,任込時間 (acid to oil) 15 分、後反応時間 20 分と指定した場合の o-及び p-ニトロトルエンのニトロ化の最適条件である。Watkin¹³⁾ は、結晶 DNT の製造法として、できるだけ純粋な DNT を得ることを目的とした方法を発展きせているが、これは第一段でトルエンを約半分 DNT を含む MNT にまで硝化し、廃酸を除いた後、これにジ混酸を注加する方法である。

トリニトロ化の反応条件については,これを詳細に 取扱つた文献が最も多く,今日殆んどその反応条件は 確立されているごとくである。硝酸比と硫酸濃度との 関係を見ると,一般的には低硫酸濃度に高硝酸比が対

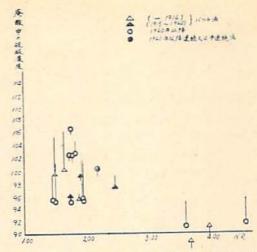


図7 トリニトロ化に於ける反応温度硫酸濃度硝酸比 反応温度は 100°C を中心とした棒の長さで 表わす。 DVS の代りに反応が完了したと仮 定した場合の魔酸濃度(硝酸フリー・ベース) を使用した。

- A. 1929年の Ullmann, "Enzyclopedie der technischen Chemie の方法(1)。
- B. 1939 年 Stettbacher "Schiess-und Sprengstoffe" の方法。
- C. 旧日本陸海軍の方法⁵⁹⁾⁽⁶⁰⁾⁽⁶¹⁾。
- D. 1945 年頃の独乙, Krümmel, Allendorf, Schlebasch 各工場の方法^{38/28/50}。
- E. 第』次大戦以来, 米国の一般的製造法となっている方法(1977)190。
- F. 1918 年頃の英国, Queens Ferry 工場における 方法5) 等であり、これらの方法を検討することによ つて従来の代表的トリニトロ化法を知ることができ る。

TNT が主として軍用爆薬に用いられるということから当然といえるが、その製造法の進歩の著るしかったのは、第1次、第1次の大戦中であった。1915~19 18 年の製造法の実際的改善の分野では、 英国軍需省 編 "Technical Records of Explosives Supply"のに詳しいが、硝化酸の濃度を増すことによって品質の向上と、 30 分の反応時間短縮を行い、これを凝固点の上昇速度で示している。この方法は DNT を混酸中に仕込む、oil to acid 方法であるが、米国で発展した方法と異り、 DNT を 45°C という低温で仕込み始

め,66°C"で住込を終え,実際の硝化反応は,大部分 後反応の昇温期間中に起る。この点で所謂"直接硝化 (Direct Nitration) 法"と異る。

Ullman の方法は混酸を DNT オイル中に 70~75°C で任込み, 90~100°C で反応させる。 100% の混酸 で, この程度の条件件では反応の完結は望めないが, この場合, 溶剤精製を行つて未硝化 DNT を除去し, 高膜固点 TNT を得ている。

Stettbacher, 旧日本陸海軍の茶褐薬及び九四式爆薬製造法は、DNT を硫酸溶解して、これに混酸を仕込む方法である。しかし Stettbacher のそれは 40~30°C で混酸を仕込み、昇温期間中に反応を行い、これに対して、旧日本陸海軍の方法は、85~100°Cで混酸を仕込み、仕込中も反応が起るようになつている。要にこの方法は後反応温度として 120~130°C という高温を用い、この程度の濃度の混酸でも硝化が完了するようにしてある。高温の後反応は DNT を TNT に転化するには有効であり、また NO₂ または NO ガスを追出すが、酸化反応も激しく、収率の減少が予想されるり。

第二次大戦中の独乙各工場の方法は大体同じであるが、Krümmel 工場を例にとれば、旧工場は acid to oil 方式を採り、新工場は oil to acid 方式を採っている。

同じ時期の米国におけるTNT製造法の進歩はPlum Blook 工場の技師, Reifsnider の綜脱に詳わしいがのTNT の製造時間短縮のために、硝化手を du Pont 柱の工場に実習させて養成し、2時間 10 分の cycle time を 1 時間 30 分にまで減らし、次いで直接硝化法、即ち oil to acid 方式を採用して、最低 40 分にまで短縮した(トリ硝化器は一系列二基あり、一基については1時間 20 分である)。

トリニトロ化の反応温度については、仕込中に大部分が反応するといわれる直接硝化法と、後反応で主反応が行われる。間接硝化法では反応温度をいづれたとるかで疑問があるが、この処では一応後反応温度を採った。反応温度は各国で夫々個有の伝統があり、吾国で発展した方法は 120~130°C、 独乙では 100°C 前後、米国では 110°C 前後となっている。

稍詳しい文献³⁹⁾⁵⁰⁾のある独乙及び米国の 1945 年の TNT 製造法に関する実例について比較すると次のご とくである。

独乙ではモノニトロ化と、次のヂー、トリニトロ化 を分離して、モノニトロ化で生成した MNTを一度精 製してから、次の段階の 硝化に使用している。特に

				独	Z	朱	囲
バ・	, + 0	大	5-2	4t		1.5t	
収			率	200%			% (トルベース)
凝	日	1	点	80.5°C		80.2°C	
反	芯	時	間	5~6時間		60~70	H
混	酸	倍	数	2.5		2.69	
N.I	₹.			1.75		1.81	
H25	50,			85%		82.7%	
HN	O ₃			24%		23.3%	
H2()			-9%		-6.2%	

MNT の精製中に簡単な水蒸気蒸溜を含み、未硝化物 や不純パラフィン類を除き、製品 TNT に高い凝固点 を与えているが、収率は米国のそれに較べて精落ち る。

現在の独乙では Schlebusch 工場その他で Meissner 式の連続硝化器が広く好成績で使われている。 吉川氏¹²⁾によれば、短時間に硝化するために、混酸等の原料を予め加熱したものを連続的に仕込むことを特徴としている。従来の硝化においては冷却するのが一段概念となつているが、Meissner 式連続硝化装置では、材料を加熱して、攪拌を迅速に行い、反応を短時間に完結し、しかも発生した反応熱は廃酸中に分散して、作業を安全に遂行している。

Ⅳ. 結 言

以上により、トルエン硝化に関する従来の方式について考察したところを述べた。将来は連続法が一般的 方式となるものと思われるが、既存のバッチ式設備を 有効に利用するのもまた有意義である。以上の考案に 基づき最も合理的と思われる硝化方式による実験の結 果その他については第二報以下に報告する。

文 市

- 1) Department of the Army Techical Manual, "Military Explosives". TM9-1910, p. 142~154 (1955).
 - 2) 加含, 鈴木文庫 1 (1911).
 - 3) 例えば一般的綜説では

Gillespie and Millen, Quart, Rev., 2, 277 (1948). C. K. Ingold, "Structure and Mechaniam in Organic Chemistry p. 269~288, Cornel University Press New York, 1953.

最近の進歩については,

- 小方, 化学の領域, 9, 510, (1955).
 - 4) Humphrey, J. Jnd. Eng. Chem., 8, 998(1916).
- 5) Ministry of Munitions, "Technical Records of Eplosives Supply" (Compiled by W. Macnab), His Majesty's Stationary Office, London 1920.
- P. J. Raifsnider, Chem. Ind. 1054~1056 (1945).
- 7) G. M. Bennett, J.C.D. Brand, D. M. James, T. G. Saunders and G. Williams, J. Chem. Soc., 1947, 474 ~492 (1947).
- C. McKinley and R.R. White, Trans. Am. Inst. Chem. Engrs., 40, 143~75 (1944).
- H. M. Brenneche and K. A. Kobe, Ind. Eng. Chem., 48, 1298 (1956).
- 10) A. J. Barduhnd and K. A. Kobe, ibid., 48, 1305 (1956).
- P. H. Groggins, "Unit Process in Organic Synthesis" 2nd Edn. p. 22~6, McGraw-Hill, New York, 1938.
- 12) P. H. Groggins, ibid., 4th Edn., p. 34~37 (1952).
- 13) P. H. Groggins, ibid., 5th Edn., p. 104~107 (1958).
 - 14) loc. cit., p. 69.
- 15) Mononitration of p-Cymene: K. A. Kobe and T. E. Dowmani; Ind. Eng. Chem., 31, 257 (1939).
- 16) Monomtration of p-Xylene: K. A. Kobe and H. Levin, ibid., 42, 352 (1950).
- 17) Nitration of mitro-p-Xylene: K. A. Kobe and T. B. Hudson, ibid., 42, 352 (1950).
- 18) Mononitration of Cumene: J. W. Haun and K. A. Kobe, ibid., 43, 2355 (1951).
- 19) Mononitration of o-Xylene: K. A. Kobe and P. W. Pritchett, ibid., 44, 1938 (1952).
- Mononitration of Benzene: K. A. Kobe and J. J. Mills, ibid., 45, 287 (1953).
- Mononitration of m-Xylene: K. A. Kobe and Kobe and H. M. Brennecke, ibid., 46, 728 (1954).
- 22) Mononitration of o-and p-Nitrotoluene: K. A. Kobe, C. G. Skinner and H. B. Plindle, ibid., 47, 785 (1955).
 - 23) Mixed Acid Nitration of Toluene: 文献 (9)
 - 24) Toluene Nitration Kinetics: 文献 (10).

- 25) H. S. Kharasch and F. H. Westheimer, PB, 31101, PB, 18955, (1941).
- 26) P.H. Groggins "Unit Process in Organic Synthesis", 5th Edn. p. 120~121, (1958).
- 27) W. H. Rinkenbach, "Encyclopedia of Chemical Technology" (Edited by Kirk and Othmer) Vol. 6, p. 45~6, The Interscience Encyclopedia Inc., New York, 1950.
- 28) C. Haüssermann, Ztschr. of angew, Chemie, 1891, 661 (1891).
 - 29) 陸軍技研, 鈴木文庫! (1911).
 - 30) 美川一雄,"爆薬学"
- 31) 西松唯一, "火薬学" p. 135~141, 丸善, 東京 (1914).
- 32) T. L. Davis, "Chemistry of Powder and Explosives" Vol. 1, p. 148 (1941).
- 33) War Department, "Military Explosives" Technical Manual 2900, p. 45.
- 34) C. F. Papazoni, U. S. Pat., 2,402, 180 (19 46).
- 35) M. Meyer, "The Science of Explosives," p. 258~259, p. 258~259, Thomas Y. Crowell Co., New York 1943.
- 36) W. H. Gibson, R. Duckham, and R. Fairbairn, J. Chem. Soc., 121, 270, (1922).
 - 37) G. C. Smith,(岩田 "火薬, 爆薬火工品" より)
 - 38) P. B. 23386.
 - 39) P. B. 22930.
 - 40) 長谷川, 鈴木文庫, 1, (1911).
- 41) F. Ullmann, "Enzyclopedie der technischen Chemie" B. 5, S. 770~771, Urban und Schwarzenberg, Berlin, 1929.
 - 42) 某工場。
- 43) W. K. Lewis and T. J. Suen, Ind. Eng. Chem., 32, 1095 (1940).
- 45) O. A. Hougen and K. M. Watson, "Chemical Process Principles," p. 1054~63, Wiley, New York, 1947.
 - 46) de Beule, Bull. Soc. Chim Beig., 42, 27
- 47) W. W. Jones and M. Rusell, J. Chem. (1933).
- Soc., 1947, 921.
- 48) F. H. Westheimer and M. S. Kharasch, J. Am. Chem. Soc., 68, 1871 (1946).
 - 49) F. Meissner, G. Wannschabband and D.

- F. Othmer, Ind. Eng. Chem., 46, 718 (1955).
 - 50) P. B. 925.
- 51) G. F. Wright, "Organic Chemistry, Advanced Treatise" (Edited by H. G. Gilman), Vol. W p. 974 (1953).
 - 52) C. F. Papazoni, U. S. Pat., 2,402,180 (1946).
 - 53) 雞波桂芳, 工火協 7, 14 (1947) 参照。
- 54) F. J. Stubbs, C. D. Williams and C. N. Hinshelwood, J. Chem. Soc., 1948, 1065.
 - 55) J. B. Castner, U. S. Pat, 2,385,128 (1945).
- 56) M. Meyer, "The Science of Explosives," p. 258~9, Thomas Y. Crowell Co., New York, 1943.
 - 57) C. Watkin, Mem. Poudres., 33, 21 (1951).
- 58) A. Stettbacher, "Die Schiess-und Sprengstoffe," S. 259~95, Johann Ambrosins Barth, Leipzig, 1933.
 - 59) 岩田貞夫, "火薬, 爆薬, 火工品" p. 311~2.
 - 60) 日本海軍,九一式爆薬製造法。
 - 61) 日本陸軍 (字治) 茶祸棗操作要領。
- 62) 吉川英吉, 欧州视察談。
- 63) Holleman, Proc. Acad. Sci., Amsterdam, 11, 248 (1908).

- 64) F. M. Vásquez, Z. f. Schiep-u Sprw., 6, 301 (1911).
- 65) 朽木, 鈴木文庫, 4, (1914).
- 66) R. Escales, "Nitrosprengstoffs" S. 140~51, Verlegvon Veit and Comp. Leipzig, 1915.
- 67) H. Kast, "Spreng-und Zündstoffe" 251~74 (1921).
 - 58) 渡辺卓郎(岩田, "火薬,爆薬,火工品"より)
 - 69) 上野繁藏"芳香族二トロ化合物"(旧海軍報告)
 - 70) P. B. 77729.
 - 71) Hoeck, Dutch Pat., 60,480 (1948).
- 72) E. R. Riegel, "Industrial Chemisty," 5 th Edn., p. 713, Reinhold, New York, 1949.
- 73) De Beule, Bull. soc. Chim., Berg., 42, 27 (1933); through Venkataraman's "The Chemistry of Synthetic Dyes" Vol. 1, p. 72, (1952).
- 74) C. Weigand, "Organic Preparations" p. 281.
 Interscience, New York, 1945.
- 75) Langenscheidt, Z. f. Schiess-u. Sprw., 7, 426 (1912).
 - 76) Thomas, U. S. Pat., 1,814, 980 (1927).
 - 77) P. B. 89275.

Consideration on Toluene Nitration (1)

Discussion of Previous Toluene Nitration

by Ken Yamasue and Tadao Yoshida (Asa Factory, Nippon Kayaku Co. Ltd.)

Summary

Previous methods of toluene nitration were considered. In order to clarify various conditions of the methods, such factors as D.V.S., nitric acid ratio, mixed acid ratio, reaction temperature, feeding method of raw materials, and agitation effect were selected as process variables. The effect of these factors on both nitration reaction and purity of the products was discussed in general terms. The process variables of each nitration stage were taken from those which were actually used in nitration though not found in literature,

and those found in previous literature. In order to make the discussion more specific, nitric acid ratio, D.V.S., and so forth were calculated according to Groggins' method, and then the results were shown in histograms, and, at the same time, the nitration lines were drawn. The consideration on each nitration stage was done by using these process valuables. Finally, the historical changes of the above mentioned variables and the characteristics of particular nitration methods were discussed.