A detailed chemical kinetic model for the combustion of gas phase ammonium nitrate

Yu-ichiro Izato^{*, **†} and Atsumi Miyake^{**}

*Graduate School of Environment and Information Sciences, Yokohama National University, 79–7 Tokiwadai, Hodogaya–ku, Yokohama–shi, Kanagawa, 240–8501 JAPAN

Phone: +81-45-339-3981

[†]Corresponding author: izato-yuichiro-hk@ynu.jp

**Institute of Advanced Sciences, Yokohama National University, 79–7 Tokiwadai, Hodogaya–ku, Yokohama–shi, 240–8501 JAPAN

Received: January 26, 2017 Accepted: December 8, 2017

Abstract

In this work, a mechanism for gas phase combustion of ammonium nitrate (AN) was identified and investigated. The optimized structures of reactants, products, and transition states were generated at the $\omega B97XD/6-311++G$ (d,p) level of theory and the total electron energies of such structures were calculated at the CBS-QB3 level of theory. The new kinetic model was subsequently used to predict low-pressure AN decomposition products, and the results were compared with the experimental data in the literature. Good agreement was found in terms of the concentrations of decomposition products, although the simulation predicted lower amounts of some products than were determined experimentally, suggesting that surface catalytic decomposition on the reactor walls may affect the AN decomposition process. A modified model including surface catalytic reactions provided better predictions. Detailed chemical reaction calculations were used to determine the AN ignition mechanism. During an induction period, the homolytic cleavage of HNO₃, with a high energy barrier, initiates a chain reaction by generating OH and NO₂, after which OH attacks NH₃ to yield NH₂. This NH₂^r reacts with NO₂^r to yield HONO via NH₂O. Finally, HONO attacks HNO₃ to yield t-ONONO₂ and this compound decomposes to start a chain-branching reaction: t-ONONO₂ \rightarrow NO₂ + NO₂ + H₂O. It was determined that, due to the stability of NH₃, this species is not attacked by NO₂[•] but solely by OH[•]. The production of OH[•] was therefore determined to be the rate-determining step for AN decomposition in the gas phase. The results of this work also demonstrate that, following sufficient accumulation of radicals, the mixture of gas phase HNO₃ and NH₃ ignites and the temperature rises sharply.

Keywords: ammonium nitrate, kinetic model, combustion, ignition mechanism, DFT

1. Introduction

Ammonium nitrate (AN) is widely used as a fertilizer and as an ingredient in industrial explosives and oxidizing chemical compositions because it is relatively cheap, releases almost 100% gaseous products upon reaction, and has a positive oxygen balance (+20.0 g g⁻¹). Unfortunately, tragic accidental explosions involving AN have occurred in the past,^{2) -5)} including incidents at a West Fertilizer Company storage facility in Texas in 2013⁴⁾ and at an AZF plant in Toulouse, France, in 2001⁵⁾. To allow the safe development and use of AN-containing devices, it is important to understand the reaction mechanisms, combustion behaviors, and thermal stabilities of AN compositions. As such, there have been many studies on the decomposition and combustion mechanisms of AN compositions^{6 - 35}.

Combustion of energetic materials, including AN, is typically characterized by a diverse range of physical and chemical processes that occur in a complex series of stages. Analyzing the behavior of an energetic material in both the condensed and gas phases is therefore an important step in obtaining a better understanding of its combustion behavior. To understand the combustion mechanism, a detailed chemical reaction simulation is helpful, and many researchers have developed reliable reaction mechanisms for gas phase H/N/O compounds. Cagnina et al.²⁸⁾ and Lin and Park^{29),30)} constructed detailed kinetics models for AN decomposition and ammonium dinitramide combustion, while Daimon et al.³¹⁾ developed a model to simulate the species and reactions that occur during the combustion of a hypergolic N₂H₄/N₂O₄ mixture. Ermolin investigated the combustion mechanism of ammonium dinitramide^{32),33)} using a detailed kinetic model.

The work reported herein had several goals: firstly, to improve the previous detailed chemical model of AN combustion by identifying new reactions and providing relevant kinetic data; secondly, to validate the proposed mechanisms by comparing the predictions to the experimental data obtained by Lin et al; and lastly, to simulate AN ignition behavior and to obtain a better understanding of the ignition mechanism.

2. Computational

The geometries of the reactants, products, and transition states were optimized at the ω B97XD/6-311++ G (d,p) level³⁴⁾ of theory using the Gaussian 09 software package³⁵⁾. Gordon et al.³⁴⁾ developed the ω B97XD method, which includes empirical dispersion forces and is believed to be reliable when applied to systems with weak van der Waals forces. Their group also reported that the ω B97XD method yields satisfactory accuracy for kinetics and non-covalent interactions³⁴⁾.

During computations, transition states (TSs) were extensively searched for and, if found, an intrinsic reaction coordinate (IRC) calculation was conducted in order to assign reactants and products to the TS. The energies of the corresponding molecules were evaluated at the CBS-QB3³⁶ level of theory, since this is a complete basis method with a reasonable time expense. In this study, geometries and frequencies were calculated at the ω B97 XD/6-311++G (d,p) level. The optimized geometries were fixed with no changes allowed, and the energies were calculated using the CBS-QB3 method, which is considered to be a cost-effective strategy for obtaining chemically accurate thermochemical calculations.

Transition state theory (TST) calculations were also performed to obtain the rate coefficient by using the Gaussian postprocessor (GPOP) program suite³⁷⁾ developed by Miyoshi^{38)–40)}. GPOP is a collection of tools for the estimation of the thermodynamics and rate coefficients of gas-phase reactions.

The CBS-QB3 method is known to generate errors during calculations for many nitrogen-based species, leading to significant inaccuracies in the prediction of rate constants. The aim of the present work was not to obtain highly accurate rate coefficients for each reaction, but to more fully elucidate the AN ignition mechanism. We believe that calculations at this level of theory can still provide valuable insights into the combustion behavior of AN.

Results and discussion Chemical kinetic modeling

3.1.1 Reaction $HNO_3 + NH_3 \rightarrow NH_2NO_2 + H_2O$

We initially identified and investigated the bimolecular reaction of NH_3 and HNO_3 , shown below. We started with the two neutral species HNO_3 and NH_3 , rather than the ionic species NO_3^- and NH_4^+ , because ionic species are not thermally favorable in the gas phase. Thus, reaction paths including ionic species were omitted from consideration as reasonable reaction paths in this study.

$$NH_3 + HNO_3 \rightarrow NH_2NO_2 + H_2O$$
 (R1)

Figure 1 presents the potential energy profile of the reaction, including the optimized structure of the transition state (TS). This process is initiated by cleavage of the N–OH bond in HNO₃, after which the resulting OH-abstracts a H from NH₃ (TS1), while the dissociated NO₂⁻ combines with the dehydrogenated NH₂⁻ to form NH₂NO₂. The associated energy barrier was determined to be 196.3 kJ mol⁻¹ at the CBS-QB3// ω B97XD/6-311++G (d,p) level of theory. The NH₂NO₂ subsequently decomposes to N₂O and H₂O. The rate coefficient for this reaction, *k*_{TS1}, at a given temperature *T* was determined using simple TST as follows :

$$k_{\text{TS1}} = 1.98 \times 10^{-1} \times T^{3.53} \exp(-22195/T) \text{ cm}^3 \text{mol}^{-1} \text{s}^{-1}$$
 (1)

3.1.2 Reaction HNO₃ + HNO₃

Two molecules of HNO $_3$ may also decompose to yield N₂O₅ and H₂O as follows :

$$HNO_3 + HNO_3 \rightarrow N_2O_5 + H_2O \tag{R2}$$

We examined this self-decomposition reaction and the subsequent processes. Figure 2 depicts the potential energy profile and optimized TS structure. The energy barrier was determined to be 89.8 kJ mol⁻¹ at the CBS-QB3// ω B97XD/6-311++G (d,p) level of theory. This reaction begins with a H· transfer from one HNO₃ to the other. The resulting H₂NO₃· subsequently decomposes to H₂O and NO₂, and NO₂ binds to NO₃⁻ from the first HNO₃ to form N₂O₅. The rate coefficient, k_{TS2} , for R2 was also evaluated using simple TST, as indicated below :

$$k_{\text{TS2}} = 4.14 \times 10^{-1} \times T^{3.25} \exp(-12870/T) \text{ cm}^3 \text{mol}^{-1} \text{s}^{-1}$$
 (2)

Figure 1 Potential energy profile for the bimolecular reaction $NH_3 + HNO_3 \rightarrow NH_2NO_2 + H_2O$ as calculated at the CBS-QB3// ω B97XD/6-311++G(d,p)level of theory.

Figure 2 Potential energy profile for the bimolecular reaction $HNO_3 + HNO_3 \rightarrow N_2O_5 + H_2O$ as calculated at the CBS-QB3// ω B97XD/6-311++G(d,p)level of theory.

Figure 3 Potential energy profile for the bimolecular reaction $NH_3 + N_2O_5 \rightarrow NH_2NO_2 + HNO_3$ as calculated at the CBS-QB3// ω B97XD/6-311++G(d,p)level of theory.

Figure 4 Potential energy profile for the bimolecular reaction $HNO_3 + HONO \rightarrow t$ -ONONO₂ + HNO₃ as calculated at the CBS-QB3// ω B97XD/6-311++G(d,p)level of theory.

3.1.3 Reaction NH₃+N₂O₅ → NH₂ONO₂ + HNO₃

Following the self-decomposition of HNO₃, the resulting N_2O_5 is capable of oxidizing NH_3 , as in the reaction below.

$$NH_3 + N_2O_5 \rightarrow NH_2ONO_2 + HNO_3$$
 (R3)

Figure 3 shows the potential energy profile of R3 and the optimized TS structure. The energy barrier was calculated to be 27.5 kJ mol⁻¹ at the CBS-QB3// ω B97XD/6 -311++G (d,p) level of theory. The bimolecular reaction of N₂O₅ and NH₃ begins with the decomposition of N₂O₅ to NO₂⁻ and NO₃⁻, after which NO₂⁻ immediately combines with NH₃ to form NH₃NO₂⁻ as TS3. The NO₃⁻ removes a H⁻ from NH₃NO₂⁻ to finally yield NH₂NO₂ and HNO₃. The rate coefficient, *k*_{TS3}, for R3 was determined using simple TST, as below.

$$k_{\text{TS3}} = 8.88 \times T^{2.85} \exp(-2924T) \text{ cm}^3 \text{mol}^{-1} \text{s}^{-1}$$
 (3)

3.1.4 Reaction $HNO_3 + HONO \rightarrow 2NO_2 + H_2O$

In this work, we also identified and investigated a bimolecular reaction series involving HNO₃ and HONO, as shown below.

Figure 6 Potential energy profile for the bimolecular reaction $NH_3 + t$ -ONONO₂ \rightarrow NH₂NO + HNO₃, as calculated at the CBS-QB3// ω B97XD/6-311++G(d,p)level of theory.

 $HNO_3 + HONO \rightarrow t - ONONO_2 + H_2O$ (R4)

$$t$$
-ONONO₂ \rightarrow NO₂ + NO₂ (R5)

Figure 4 shows the potential energy profiles of the series of reactions, including the optimized structures of the TSs. The cleavage of the N–OH bond in HONO triggers the decomposition, after which the OH abstracts a H from HNO₃ (TS4), while the dissociated NO combines with NO₃ to form *t*-ONONO₂. The associated energy barrier was determined to be 36.7 kJ mol⁻¹ at the CBS-QB $3//\omega$ B97XD/6-311++G (d,p) level of theory. Subsequently, the *t*-ONONO₂ decomposes to give two NO₂ molecules via TS5, as shown in Figure 5. The dissociation energy of *t*-ONONO₂ was determined to be 22 kJ mol⁻¹. The respective rate coefficients, *k*_{TS4} and *k*_{TS5}, for reactions R4 and R5 were evaluated using simple TST, as follows :

 $k_{TS4}=2.40\times10^{-1}\times T^{3.47} \exp(-3595/T) \text{ cm}^3\text{mol}^{-1}\text{s}^{-1}$ (4)

$$k_{\text{TS5}} = 2.95 \times 10^{12} \times T^{0.17} \exp(-3975/T) \,\mathrm{s}^{-1}$$
 (5)

3.1.5 Reaction NH₃+t-ONONO₂ → NH₂NO + HNO₃

The oxidization of NH₃ by *t*-ONONO₂ was also modeled as follows :

$$NH_3 + t$$
-ONONO₂ \rightarrow $NH_2NO + HNO_3$ (R6)

Figure 6 shows the potential energy profile of R6 and the optimized TS structure. The energy barrier was calculated to be 27.5 kJ mol⁻¹ at the CBS-QB3// ω B97XD/6 -311++G (d,p) level of theory. The reaction of *t*-ONONO₂ and NH₃ begins with the decomposition of *t*-ONONO₂ to NO· and NO₃, after which NO· immediately combines with NH₃ to form NH₃NO· as TS6. NO₃⁻ then removes a H· from NH₃NO·to yield NH₂NO₂ and HNO₃. The rate coefficient,

No.	Reaction	ΔE_0 [kJ mol ⁻¹]		k		
		TS	Product	A^1	п	$\Delta E a^2$
1	$NH_3 + HNO_3 \rightleftharpoons NH_2NO_2 + H_2O$ (TS1)	196.3	-57.9	1.98×10^{-1}	3.53	184.5
2	$HNO_3 + HNO_3 \rightleftharpoons N_2O_5 + H_2O$ (TS2)	74.1	70.7	4.13×10 ¹	3.24	107.0
3	$\rm NH_3 + N_2O_5 \rightleftharpoons \rm NH_2NO_2 + HNO_3$ (TS3)	32.4	-105.6	8.88	2.85	24.3
4	$HNO_3 + HONO \rightleftharpoons t$ -ONONO ₂ + H ₂ O (TS4)	36.7	27.9	2.40×10^{-1}	3.47	29.9
5	t -ONONO ₂ \rightleftharpoons NO ₂ + NO ₂ (TS5)	32.0	22.1	2.95×10^{12}	0.17	33.1
6	$NH_3 + t$ -ONONO ₂ \rightleftharpoons $NH_2NO + HNO_3$ (TS6)	20.7	-46.9	3.14×10^{1}	2.79	10.7

Table 1 Additional reactions and rate coefficients employed during the kinetic modeling of AN combustion

¹ Frequency factor is given in units of cm³, mol, and s.

² Activation energy is in units kJ mol⁻¹.

Figure 7 Rate coefficients for the (A) bimolecular and (B) unimolecular AN combustion reactions in Table 1.

 k_{TS6} , for R6 was determined using simple TST, as in the following expression :

$$k_{\text{TS6}} = 3.14 \times 10^{1} \times T^{2.79} \exp(-1283/T) \text{ cm}^3 \text{ mol}^{-1} \text{s}^{-1}$$
 (6)

3.2 Simulations

The kinetics of AN decomposition were modeled based on TST, using the parameters provided in Table 1. During this study, we modified the YNU 1.1 model previously reported by our group⁴¹⁾. The YNU 1.1 model has been employed to analyze the decomposition of hydroxylamine in the gas phase. The majority of the elementary reactions of N-H species and the corresponding rate coefficients in this mechanism are taken from a report by Dean and Bozzelli⁴²⁾, while data for the reaction NH_2 + OH \rightleftharpoons NH₂OH are from the NIST kinetics database⁴³⁾, and data for the reaction $HNO_3 \rightleftharpoons OH + NO_2$ are from the literature²⁹⁾. However, the subset of reactions related to hydrogen combustion in the YNU01 model was replaced by a more recently derived mechanism⁴⁴⁾. The new model incorporates 41 species and 282 reactions. Figure 7 plots the variations in the rate coefficients of the reactions listed in Table 1 with temperature.

3.2.1 Low pressure decomposition products

To validate the model, we calculated the expected products of AN decomposition at low pressure and compared the predictions to the experimental observations of Lin et al., who studied the thermal decomposition of AN in the gas phase under low-pressure conditions over the range of 250–683 °C by pyrolysis/mass spectrometry using a reactor coated with boric acid³⁰⁾. The CHEMKIN-PRO program suite⁴⁵⁾ was employed for these calculations. Figure 8 plots the concentrations of AN decomposition products against the reaction temperature and shows both the simulated and experimental results.

The previous model³⁰⁾ was insufficient to account for the consumption of NH₃ and the formation of H₂O. As can be seen in the dash-dotted lines in Figure 8, no noticeable decomposition of NH₃ was found using this model. It is known that the decomposition of HNO₃ is affected by wall surfaces through the heterogeneous decomposition reaction $HNO_3 + M$ (wall) $\rightarrow NO_2 + OH + M$ (wall), which has a reaction rate much higher than that of homogeneous decomposition at the reactor surface^{30),46)}. Thus, the heterogeneous decomposition of HNO3 was taken into consideration. In the previous study³⁰⁾, the kinetics of the heterogenous reaction of HNO3 on the wall were obtained using inverse analysis. The rate was determined by varying the rate to match the modeled yields of NH₃ and H₂O to the experimentally measured concentrations. The adjusted kinetics provided excellent predictions. However, our new model did not include any such adjustment of parameters to experimental data. The dashed lines in Figure 8 show the predictions of the YNU 1.1 model with the new kinetic components described in Section 3.1. It can be seen that the data obtained from the kinetics model agreed reasonably well with the experimental results without requiring the use of any fitting parameters. We therefore conclude that the new model can provide an

Figure 8 Comparison of experimental data and kinetic modeling results for the AN decomposition process. The square symbols and dash-dotted lines (NH₃) represent experimental data from a literature report³⁰). The plots were obtained using the modified YNU 1.1 model (dashed lines) and the YNU01 model including the heterogeneous decomposition of HNO₃ on the reactor walls (solid lines). Initial conditions were : (A) NH₃ = HNO₃ = 3.1×10^{-1} Pa, N₂ = 9.3×10^{-1} Pa, reaction time = $23.16 T^{-1}$ s (*T* in kelvin), and *P* = 666.6 Pa (using He), and (B) NH₃ = HNO₃ = 2.3×10^{-1} Pa, N₂ = 9.3×10^{-1} Pa, N₂O = 13.3×10^{-1} Pa, reaction time = $15.16 T^{-1}$ s, and *P* = 826 Pa (using He).

improved understanding of the decomposition of AN. It is evident, however, that the simulations using our new model predict that less NH₃ will be consumed and less H₂O will be generated compared to the experimental observations. H₂O is primarily generated from the reactions HNO₃ \rightarrow NO₂· + OH· and NH₃ + OH· \rightarrow NH₂· + H₂O. The homogeneous decomposition reaction HNO₃ \rightarrow NO₂· + OH· is too slow to initiate a chain reaction. We also calculated the reaction coefficient for the heterogeneous decomposition reaction in a glass reactor (140 mm length) based on a literature report⁴⁶) as follows :

$$k'=1.89\times10^{1}\times T^{2.12} \exp(-11490/T) \mathrm{s}^{-1}$$
 (7)

The solid lines in Figure 8 indicate the predicted concentrations using the new model when incorporating heterogeneous decomposition. When modified in this manner, the model provides better predictions. However, further improvement is needed to provide better prediction at temperatures below approximately 550 °C. The decomposition rate was significantly dependent on the surface-to-volume ratio and insensitive to temperature. Therefore, in order to improve the accuracy of the predictions, we should obtain and determine kinetics for each reactor.

3.2.2 Ignition mechanism

To obtain a better understanding of the AN ignition process, the modified YNU 1.1 model was used to calculate the ignition delay time of a 1 : 1 (on a molar basis) NH₃/ HNO₃ gas mixture at $P_0 = 1$ atm and $T_0 = 350$ °C during adiabatic combustion (meaning constant enthalpy and pressure). These calculations were performed using the CHEMKIN-PRO program suite⁴⁵⁾. The T_0 value of 350 °C was chosen because this temperature is approximately the dissociation point of AN at 1 atm⁷⁾.

The temperature and species time profiles for an initial temperature of $T_0 = 350$ °C are shown in Figure 9, in which the abrupt rise in temperature at approximately 0.15 s clearly indicates the ignition. During the induction period, the concentrations of NO₂, HONO, and OH are all seen to increase.

Figure 9 Temperature (A) and species (B) time histories for a 1:1 molar mixture of gaseous HNO₃/NH₃ at $P_0 = 1$ atm and $T_0 = 350$ °C under adiabatic constant pressure conditions.

Figure 10 summarizes the absolute production rates of important species (NH₃, HNO₃, NO₂, HONO, and NH₂O), calculated based on a reaction path analysis using the CHEMKIN-PRO program suite⁴⁵⁾. The majority of the HNO₃ is consumed by two reactions : HNO₃ \rightarrow NO₂ + OH· and HNO₃ + HONO \rightarrow *t*-ONONO₂ + H₂O. Because NH₃ is relatively stable, it reacts to yield NH₂⁻ via the attack of OH· rather than NO₂⁻. However, NO₂⁻ can react with NH₂⁻ to yield NH₂O· and HNO. The majority of NO₂⁻ is consumed by three reactions : NH₂ + NO₂⁻ \rightarrow NH₂O· + NO, HNO + NO₂⁻ \rightarrow NO· + HONO, and NH₂O· + NO₂⁻ \rightarrow

Figure10 Absolute rates of production of important species (NH₃, HNO₃, NO₂, HONO and NH₂O) at 0.15 s and T_{0.15} = 383 °C, calculated using the modified YNU01 model using CHEMKIN-PRO.

Figure11 A reaction scheme for AN decomposition during the induction period.

HNO + HONO. The HONO promotes the decomposition of HNO₃ to yield two NO₂[•] via *t*-ONONO₂. Figure 11 depicts the proposed AN ignition mechanism based on these results. The homolytic cleavage of HNO₃, HNO₃ \rightarrow OH[•] + NO₂[•], triggers the chain reaction in which OH[•] reacts with NH₃ to give NH₂[•] and H₂O. The reaction of \cdot NH₂ and \cdot NO₂ has two possible paths, yielding either N₂O and H₂O or NH₂O[•] and HNO. NO₂[•] attacks NH₂O[•] or HNO to yield either HNO and HONO, or HONO and NO, respectively, after which HONO attacks HNO₃ to yield two NO₂[•] and H₂O via *t*-ONONO₂. This chain-propagation loop increases the NO₂[•] and HONO concentrations and prolongs the radical chain reaction. As noted, the stability of NH₃ prevents its reaction with the low-reactivity NO₂^{\cdot} radical. Thus, the production of the high-reactivity OH radical via the homolytic cleavage of HNO₃ is the rate-determining step for AN decomposition in the gas phase. In this proposed process, the accumulation of a sufficient concentration of radical species leads to ignition of the HNO₃ and NH₃ gas mixture with an attendant rapid temperature rise.

4. Conclusions

The combustion pathway of AN in the gas phase was investigated on the basis of quantum chemical calculations. The calculations were performed at the ωB97XD/6-311++G (d,p) and CBS-QB3//ωB97XD/6-311+ +G (d,p) levels of theory. Mechanisms for the reactions $HNO_3 + NH_3 \rightarrow NH_2NO_2 + H_2O$; $HNO_3 + HNO_3 \rightarrow N_2O_5 +$ H_2O ; $N_2O_5 + NH_3 \rightarrow NH_2NO_2 + H_2O$; $HNO_3 + HONO \rightarrow$ t-ONONO₂ + H₂O; t-ONONO₂ \rightarrow NO₂ + NO₂; and t-ONONO₂ + NH₃ \rightarrow NH₂NO₂ + HNO₃ were developed and added to the YNU01 model⁴¹⁾. To validate the modified mechanisms, we compared the predicted products of the thermal decomposition of gas-phase AN to experimental data. The kinetics model data agree reasonably well with the experimental results without the use of any fitting parameters. The new model should, however, be modified to incorporate heterogeneous decomposition at the reactor walls. A model revised in this manner will be able to provide better predictions of AN decomposition in a reactor. Detailed chemical reaction simulations revealed that the ignition occurs after an induction period at an initial temperature of 350 °C, which is the dissociation point of AN at 1 atm. Homolytic HNO₃ cleavage, HNO₃ \rightarrow NO_2 + OH, starts the decomposition reaction, and then OH· attacks NH3 to yield NH2. NO2 does not attack NH3 because NH₃ is stable, but it reacts with NH₂^r to yield NH₂O·. NH₂O· reacts with NO₂ to yield HONO and HNO. HONO attacks HNO₃ according to the reaction HNO₃ + HONO \rightarrow 2NO₂· + H₂O, which is a chain-branching process. Due to the stability of NH₃, only OH can attack this unreactive species. The production of OH; which occurs via the homolytic cleavage of HNO₃, is the ratedetermining step of AN decomposition in the gas phase. After sufficient radical accumulation, the HNO3 and NH3 gas mixture ignites and the temperature rises sharply.

References

- 1) C. Oommen and S. R. Jain, J. Hazard. Mater., A67, 253-181 (1999).
- J. C. Oxley, J. L. Smith, E. Rogers, and M. Yu, Thermochimica Acta., 384, 23–45 (2002).
- 3) G. Marlair and M. Kordek, J. Hazard. Mater., A123, 13-28 (2005).
- 4) Chemical Safety Board, "Preliminary Findings of the U.S. Chemical Safety Board from its Investigation of the West Fertilizer Explosion and Fire", http://www.csb.gov/assets/1/ 19/West_Preliminary_Findings.pdf (accessed : 15-January-2013). (online).
- N. Dechy, T. Bourdeaux, A. Ayrault, M. Kordek, and J. L. Coze, J. Hazard. Mater.,111, 131–138 (2004).
- V. P. Sinditskii, V. Y. Egorshev, A. Y. Levshenkov, and V. V. Serushkin, Propellants Explos. Pyrotech., 30, 269–280 (2005).
- V. P. Sinditskii, V. Y. Egorshev, V. V. Serushkin, and S. A. Filatov, Combust Expl Shock Waves., 48, 81–99 (2012).
- 8) K. Kajiyama, Y. Izato, and A. Miyake, J. Therm Ana. Calorim,113,

- Y. Izato, A. Miyake, and S. Date, Prop. Explos. Pyrotechnics, 38, 129–135 (2013).
- A. Miyake and Y. Izato, Intl. J. Energetic Materials and Chemical Propulsion, 9, 523–531 (2011).
- Y. Izato, H. Echigoya, and A. Miyake, Sci. Tech. Energetic Materials, 70, 101–104 (2009).
- 12) Y. Izato, K. Kajiyama, and A. Miyake, Sci. Tech. Energetic Materials, 75, 128–133 (2014).
- 13) J. C. Oxley, J. L. Smith, and W. Wang, J. Phys. Chem., 98, 3901– 3907 (1994).
- 14) K. R. Brower, J. C. Oxley, and M. Tewari, J. Phys. Chem., 89, 4029 -4033 (1989).
- 15) G. B. Manelis, G. M. Nazin, Y. I. Rubtsov, and V. A. Strunin, "Thermal Decomposition and Combustion of Explosives and Propellants" Taylor & Francis, 175–187 (2003).
- 16) Y. Wada and M. Arai, Sci. Tech. Energetic Materials, 71, 39–43 (2010).
- 17) Y. Miyata and K. Hasue, J. Energ. Mater., 29, 344-359 (2011).
- 18) M. Pandey, S. Jha, R. Kumar, S. Mishra, and R. R. Jha, J. Therm. Anal. Calorim., 107, 135–140 (2012).
- 19) A. G. Keenan, K. Notz, and N. B. Franco, J. Am. Chem. Soc., 91, 3168–3171 (1969).
- 20) J. H. Macneil, H. Zhang, P. Berseth, and W. C. Trogler. J. Am. Chem. Soc., 119, 9738–9744 (1997).
- X. R. Li and H. Koseki, Process Safety and Environmental Protection. 83, B1, 31–37 (2005).
- 22) J. Sun, Z. Sun, Q. Wang, H. Ding, T. Wang, and C. Jiang, J. Hazard. Mater., B127, 204–210 (2005).
- 23) J. C. Oxley, J. L. Smith, S. Naik, and J. Moran, J. Energe. Mater., 27, 17–39 (2009).
- 24) V. A. Koroban, Propellants Explos. Pyrotech., 19, 307-310 (1994).
- 25) D. G. Patil, S. R. Jain, and T. B. Brill, Propellants Explos. Pyrotech., 17, 99–105 (1992).
- 26) A. Mirvakili, F. Samimi, and A. Jahanmiri, J. Ind. Eng. Chem., 20, 2452–2462 (2014).
- 27) S. A. Skarlis, A. Nicolle, D. Berthout, C. Dujardin, and P. Granger, Thermochimica Acta., 584, 58–66 (2014).
- 28) S. Cagnina, P. Rotureau, G. Fayet, and C. Adamo, Phys. Chem. Chem. Phys., 15, 10849–10859 (2013).
- 29) J. Park, D. Chacraborty, and M. C. Lin, Symp. (Int.) on Combust., 27, 2351–2357 (1998).
- 30) J. Park and M. C. Lin, J. Phys. Chem. A, 113, 13556-13561 (2009).
- 31) Y. Daimon, H. Terashima, and M. Koshi, J. Propul. Power, 30, 707 -716 (2014).

- 32) N. E. Ermolin, Combust. Explos. Shock Waves, 40, 92-109. (2004).
- 33) N. E. Ermolin, Combust. Explos. Shock Waves, 43, 549–561 (2007).
- 34) J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 10 6615-6620 (2008).
- 35) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT (2010).
- 36) J. A. Montgomery, M. J. Frisch, J. W. Ochterski, and G. A. Petersson, J. Chem. Phys., 110, 2822–2827 (1999).
- 37) A. Miyoshi, GPOP software, rev. 2013.07.15 m5, available from the author. See http://www.frad.t.u-tokyo.ac.jp/~miyoshi/gpop/.
- A. Miyoshi, International Journal of Chemical Kinetics, 42, 273– 288 (2010).
- 39) A. Miyoshi, J. Phys. Chem. A, 115, 3301-3325 (2011).
- A. Miyoshi, International Journal of Chemical Kinetics, 44, 59–74 (2012).
- 41) Y. Izato, M. Koshi, and A. Miyake, Sci. Tech. Energetic Materials, 78, 12–18 (2017).
- 42) A. M. Dean, J. W. Bozzelli, and W. C. Gardiner Jr ed., "Gas-Phase Combustion Chemistry", 125–316, Springer-Verlag, New York (2000).
- 43) NIST Chemical Kinetics Database, Standard Reference Database 17, Version 7.0 (Web Version), Release 1.6.8 Data Version 2015.12 (accessed : 28-July- 2016). (online).
- 44) K. Shimizu, A. Hibi, M. Koshi, Y. Morii, and N. Tsuboi, J. Propul. Power, 27, 383–395 (2011).
- 45) CHEMKIN-Pro Input Manual PRO-INP-15092-UG-1, Reaction Design, San Diego, CA (2011).
- 46) H. S. Johnston, L. Foering, Y. S. Tao, and G. H. Messerly, J. Am. Chem. Soc., 73, 2319–2321 (1951).