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1.  Introduction
  This paper describes the operation and usefulness of an 
optical fiber gauge for explosives scientists and engineers 
studying shocks generated in small-scale tests. This gauge 
uses changes in refractive index to measure shock time of 
arrival and is being developed for quantifying pressure.
  Characterizing the shocks generated when explosives 
detonate is important to understanding their performance. 
Engineers prefer to minimize costs by evaluating explo-
sives with small-scale tests. Consequently, gauges must 
be small, remotely operated, and immune to the electrical 
interference inherent in being so close to an electrically-
initiated detonator. Although piezoelectric and piezoresis-
tive gauges1)~5) can be quite thin, they are susceptible to 
electrical noise6). Another proven gauge is the Velocity 
Interferometry System for Any Reflector (VISAR)7), but 
it is complex to operate and requires a reflective surface, 
so it cannot probe many geometries. Finally, the ruby 
gauge measures pressure and temperature under static8) 
and dynamic conditions9). Ruby hemispheres on the tip of 
an optical fiber pumped by a laser can operate remotely6). 
However, the requirement of a streak camera makes the 
technique expensive and complex. In summary, existing 
gauges are significantly limited for shock characterization.
  To address these restrictions on shock characterization, 
we are developing a gauge based on light reflection at an 
interface. Termed the Gauge using Refractive Index for 

Pressure, or GRIP, it requires only a continuous-wave 
laser, an optical fiber, a photodiode, and an oscilloscope. 
In a test comparing the GRIP and a ruby gauge underwa-
ter, the GRIP agreed with the ruby gauge10).
  Here, the Modified Gap Test (MGT) evaluated the 
GRIP’s applicability to solids. We examined two applica-
tions: a thin layer of silicone on the fiber tip, and a boot of 
fluid surrounding the fiber. The first application’s results 
might constitute a calibration curve, while the second 
application responded to the shock upon its arrival at the 
GRIP’s tip. Both applications require hydrocode modeling 
for accurate conversion of the GRIP traces to pressures.

2.  Experimental section
2.1 GRIP setup and principles
  Figure 1 shows the GRIP’s optoelectronic setup as previ-
ously described10). An optical fiber guided 532 nm laser 
light into the test chamber, and a photodiode monitored the 
amount of light reflected from the optical fiber-substance 
interface. A simple model describes the measured signal:
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where S(t) (V) is the photodiode signal measured by the 
oscilloscope as a function of time, W (mW) is the laser 
power entering the optical fiber, f (V mW-1) is the overall 
conversion efficiency of light input into the optical fiber to 
voltage measured by the oscilloscope, nsubst(t) is the refrac-
tive index of the substance at the optical fiber-substance 
interface as a function of time, nfiber is the refractive index 
of optical fiber core, and s0 is the background scattering 
fraction when no light is reflected from the optical fiber-
substance interface itself. In this paper, interface refers to 
any step boundary of refractive index.
  To determine the pressure of the substance in contact 
with the optical fiber tip, one must convert the GRIP trace 
to refractive index of the substance, and then to pressure. 
To calibrate refractive index vs. GRIP signal, we fit f and 
s0 to static GRIP signals for fluids of known refractive 
index as described previously10). Refractive index often 

increases linearly as density increases, as in the Gladstone-
Dale model. In turn, density typically increases as pressure 
increases but decreases as temperature increases. A cali-
bration curve of peak refractive index vs. Modified Gap 
Test shock pressure might then convert refractive index to 
pressure, assuming the substance’s temperature is approxi-
mately the same between tests.

2.2 Modified gap tests
  We followed the MGT protocol (see Fig. 2a) because it 
has been calibrated for peak shock pressure as a function 
of PMMA (polymethyl methacrylate, “plexiglass”) gap 
distance11)~13). An RP-80 detonator (Reynolds) initiated 
a cylindrical 50.8 mm diameter × 50.8 mm tall pentolite 
explosive charge, which subjected a PMMA cylinder 
directly above the pentolite to shock compression. The 
distance between the pentolite and GRIP’s tip along the 
PMMA cylinder’s axis defined the gap. Gaps from 23 to 
52 mm corresponded to pressures from 6 to 2 GPa, respec-
tively. Each optical fiber had a 0.400 mm diameter silica 
core (Fiberguide) and was cleaved by an automated cleaver 
(Vytran).
  To verify MGT shock pressures, a framing camera 
(Imacon) measured shock velocities (see Section 3.1). 
A wooden baffle prevented debris ejected by the explo-
sion from obscuring the PMMA cylinder. A flat window 
allowed light to pass through the PMMA unbent by a 
curved surface (see Fig. 3). Creating this window by 
removing material (0.4 mm in depth) from two opposite 
sides of the PMMA cylinder does not change the MGT 
calibration11).
  In the first GRIP application method, termed silicone 
on tip (see Fig. 2b), silicone rubber was the applied sens-
ing medium. The silicone was designed to constitute the 
nsubst(t)14) in Eqn. 1 when the silicone’s density and refrac-
tive index changed during shock compression. A thin layer 
(approximately 0.1 mm) of clear colorless silicone rubber 
(Dow Corning 3145 RTV) on the fiber tip sufficed because 
the reflectance equation, incorporated in Eqn. 1, is valid 
for any layer thicker than half the wavelength of light 
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Fig. 1 Optoelectronic schematic for GRIP in Modified 
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  Fig. 2 a) Modified gap test setup for characterizing shocks. The gap is the distance between the top of the pentolite 
 explosive charge and the tip of the GRIP optical fiber gauge inserted into the PMMA cylinder. b) Schematic of 
 silicone on tip GRIP application. c) Schematic of boot of fluid GRIP application.



J. E. Monat    et  al.14

being used (herein, l / 2 = 266 nm)15). We applied silicone 
under a microscope, allowed the silicone to cure overnight, 
then trimmed off excess silicone with a razor blade. A 0.99 
mm diameter hole down the PMMA cylinder’s axis housed 
the GRIP fiber, and ultraviolet (UV) cured epoxy held 
the fiber in place16). Because air bubbles within materials 
decrease the pressure of incident shocks due to impedance 
mismatches17), we removed air bubbles before curing the 
epoxy.
  The second GRIP application method, referred to as boot 
of fluid (see Fig. 2c), used a fluid as the sensing medium. 
We chose the pressure medium of 4:1 methanol:etha-
nol because it remains hydrostatic up to 10 GPa18), has a 
known refractive index vs. pressure curve19), and showed 
no visual change under static compression through 3.25 
GPa. The boot was a polyethylene pipette with inner diam-
eter approximately 1.4 mm and outer diameter approxi-
mately 2.5 mm. Black paint approximately 1 mm deep in 
the pipette’s open end prevented light from reaching other 
interfaces20). After we cut off the pipette bulb and injected 
4:1 methanol:ethanol into the pipette stem with a syringe 
and needle, we inserted the optical fiber. Then, with the 
assembly oriented vertically, UV light began curing the 

epoxy as it flowed into the top of the pipette. This was 
necessary because the uncured epoxy reacted with the 4:1 
methanol:ethanol and formed an insoluble viscous sub-
stance, but the cured epoxy was inert. Next, we drilled a 
2.8 mm diameter hole down the PMMA cylinder’s axis and 
filled the hole with UV-curing epoxy. Finally, we removed 
air bubbles by allowing the epoxy to settle in the hole for 
an hour before we carefully inserted the boot assembly and 
cured the epoxy.

3.  Results and discussion
3.1 Framing camera photography
  Framing camera photographs verified MGT shock pres-
sure. Figure 3 shows an example set of photographs; the 
shock is the uppermost dark front moving up the middle 
of the PMMA cylinder. After we computed the shock 
velocity, we used the Hugoniot of PMMA12) to obtain 
particle velocity and pressure. The results agreed with 
the MGT calibration of pressure vs. distance, which con-
firmed that the setup used here reproduced the MGT pro-
tocol. The camera’s spatial resolution dictated the uncer-
tainty in shock position and velocity, which results in 
pressure uncertainties as shown by the pressure error bars 
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in Fig. 5. We also used the photographs with interframe 
times 0.8-2.1 µs to measure the shock arrival time at the 
GRIP’s tip with an uncertainty of approximately 0.2-0.5 
µs (we estimate interpolations are accurate to one-quarter 
of the interframe time).

3.2 GRIP traces
  Figure 4 shows that the silicone on tip GRIP application 
correctly measured time of shock arrival with respect to the 
framing camera. Figure 4 labels each trace with its nominal 
MGT calibration11)~13) pressure: 2.01 GPa (51.6 mm gap) 
and 3.99 GPa (37.6 mm gap). These are the peak shock 
pressures PMMA experiences when the gap is composed 
solely of PMMA. The vertical dashed lines are the shock 
arrival times at the GRIP’s tip according to the framing 
camera. These coincided within the camera’s experimental 
uncertainty (shown as error bars) with the rapid increase in 
GRIP signal, demonstrating that the latter corresponded to 
the shock.
  Additional interfaces complicated the analysis of Fig. 
4 in terms of refractive index and pressure. Before the 
shock reached the GRIP, each GRIP trace held constant 
at its ambient-pressure value. If changes across only the 
fiber-silicone interface modulated these traces when the 
shock arrived, the traces would move downward upon 
shock compression when the silicone rubber became 
denser. Because the traces moved in the opposite direction, 
another interface (most likely silicone-epoxy) must have 
dominated the signal. In addition, shock compression may 
change the refractive index of the optical fiber core itself, 
changing nfiber in Eqn. 1 and introducing another interface 
within the optical fiber. Because changes in the refractive 
index across multiple interfaces at pressure affected the 
traces, Eqn. 1 cannot convert the signal S(t) to refractive 
index nsubst(t). Therefore we analyzed the data as normal-
ized signal S(t) / Wf.

  Figure 5 shows that the peak of the normalized GRIP 
trace increased with nominal MGT pressure for these two 
tests compared to ambient-pressure silicone. Adjacent 
averaging of 20 points smoothed the GRIP signal traces, 
providing the peak values shown. Such a plot might be 
used as a calibration curve to relate normalized signal to 
pressure if further tests follow this trend.
  Figure 6 shows that the boot of fluid application also 
correctly measured shock arrival times with respect to 
the framing camera. Fig. 6 shows GRIP traces from four 
boot of fluid tests and labels each trace by nominal MGT 
calibration11)~13) pressure: 6.0 GPa (23 mm gap), 4.2 GPa 
(37 mm gap), 3.1 GPa (42 mm gap), and 2.0 GPa (51 mm 
gap). Each trace moved rapidly downward upon shock 
arrival at the GRIP’s tip (shown as time zero)21). These 
arrival times coincided with those from the framing cam-
era (dashed vertical lines) within the camera’s experimen-
tal uncertainty (shown as error bars), confirming the shock 
front caused each GRIP trace’s rapid downward motion. 
Although the trace moved downward as expected when the 
shock arrived at the GRIP’s tip, additional interfaces, par-
ticularly the shocked fiber-unshocked fiber interface, also 
complicated these traces.
  Before the results can be converted to refractive indices 
or pressures, three-dimensional modeling is needed to 
account for pressures and temperatures across interfaces. 
A hydrocode description of the surrounding materials and 
their refractive indices will be addressed in the future. 
Nevertheless, the silicone on tip GRIP application can 
determine, using the MGT, which of two explosive charges 
produces a greater pressure at a given gap distance using 
normalized GRIP signal change (as in Fig. 5).
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4.  Conclusions
  Using an optical fiber, the Gauge using Refractive Index 
for Pressure (GRIP) monitored shock fronts in Modified 
Gap Tests. We examined two GRIP applications: a thin 
layer of silicone rubber on the fiber tip, and a boot of fluid 
surrounding the fiber. The first application may be use-
ful for empirically determining the peak signal vs. MGT 
pressure. In the second application, the GRIP responded 
to the shock when it reached the GRIP’s tip. The GRIP 
is clearly useful as a shock time-of-arrival gauge even in 
opaque housings, in complex geometries, and under elec-
trical interference where existing techniques fail. As Fig. 5 
suggests, the silicone on tip GRIP application can compare 
explosive performance using the MGT by determining 
which of two explosive charges produces a greater pres-
sure at a given gap distance. Consideration of additional 
interfaces and the response of materials, including the 
optical fiber, is necessary to employ the GRIP for refrac-
tive index and pressure measurements.
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