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Development of a 2D eulerian code for reactive shock
analysis using CIP scheme

Zhiyue Liu’, Shiro Kubota®, Masato Otsuki™ ", Koichi Yoshimura', Ken Okada’,
Yoshio Nakayama®, Masatake Yoshida; and Shuzo Fujiwara’

Eulerian numerical technique is superior to the Lagrangian method in the calculation of
problems involving shocks and large deformations. However, the Eulerian method has its own
several technical problems that are being improved presently. A major one of those is the
numerical diffusion related to the computational scheme; another is the determination of
pressures in mixed cells when problems include two or more types of materials. The cubically
interpolated polynomial (CIP) scheme exhibits its advantages to the prevention of numerical
diffusion. For the pressures in mixed cells, a relatively simple method has recently been proposed
for solving the interactions of materials with solid and gaseous phases. The method explicitly
solves pressures in mixed cells without use of the iteration procedures. This paper will describe
the development of a two-dimensional Eulerian code, MARS2D (Multi-dimensional Analysis
Code for Reactive Shocks, 2D vision), that employs the above two technical routines for the
purposes of calculating the problems involving strong shocks and reactive media. Problems of
high-velocity impact, blast waves in air, and cylinder expansion test will be taken as the

computational examples,

1. Introduction

Shock waves and large deformations are often
encountered in the processes of high velocity impact
of materials and of explosions of explosives in the
surrounding media. The propagation of shock wave
and the material deformation presented in such
phenomena are very complicated and cannot be
solved by empirical formulas or analytical methods
in practice. So, numerical approaches become
major tool in the treatment on those types of
problems. Generally there are two kinds of
numerical formulations to solve the problems
involving shocks and large deformations,
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Lagranian and Eulerian methods.'” The
Lagrangian method has the advantages in
numerical accuracy and also in the tracing of the
motion of the material interfaces when a problem
involves multiple materials. However, in the cases
of strong shocks and large deformations, the
Lagrangian formulation exposes its drawbacks in
the calculation. Mesh tangling and crashes due to
the strongly deformed cells will result in the
stagnation of the progress of the calculation unless
a very complex procedure, rezoning technique, is
introduced to weaken the effect of those
shortcomings. The Eulerian formulation does not
possess such problems because the mesh used in
the calculation is fixed regarding to the space. From
this point of view, the Eulerian technique is of great
advantage over the Lagrangian method. Even so,
the Eulerian method has its own several technical
problems that are being improved presently. A
major one of those is the numerical diffusion related
to the computational scheme; another is the
determination of pressures in the mixed cells when
problems include two or more types of materials.
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On the computational schemes, the cubically
interpolated polynomial (CIP) scheme *® exhibits
its advantages to the prevention of numerical
diffusion. Employing that scheme, a series of
computer programs (MARS1D, MARS2D and
MARS3D) have been developed or are still being
developed at AIST ”. On the other hand, for the
pressures in mixed cells, the most commonly used
method is the iteration procedures by assuming
that each component in the mixtures is in thermal
and pressure equilibria or only in pressure
equilibrium. Recently, Vorobiev and Lomov ® have
tried a relatively simple method on the
determination of pressures in mixed cells of
materials with solid and gaseous phases. The
method explicitly solves pressures in mixed cells
without use of the iteration procedures. It
demonstrates much superiority both in program
coding and in reduction of computing time. This
paper will describe the development of a two-
dimensional Eulerian code, MARS2D, which
employs both technical routines for the purposes
of calculating the problems involving strong shocks
and reactive media. Problems of high-velocity
impact, blast waves in air, and cylinder expansion
test are used as the computational examples.

2. CIP Scheme

The basic consideration in the numerical
technique of cubically interpolated polynomial
(CIP) scheme is to divide a hyperbolic form of partial
differential equation into two parts called the non-
advection phase and the advection phase,
respectively, and the solution to the equation is
taken as a consequence of the advection of the
temporary solution obtained at the non-advection
phase. In order to have a quick understanding to
this numerical scheme, a one-dimensional partial
differential equation is employed for illustration,

where, f and g are functions of space coordinate,

g(x,0), (§))

x, and time, {, u is a positive constant and is usually
called the advection velocity. In the CIP scheme,
the above equation is divided into two sub-equations
such as,

% =gix.7) . (non-advection phase) (2)

ZACLIIN u% =0,(advection phase) 3)

17}
In general, Eq. (1) can be solved by finite
difference approach with no difficulty. If denoting
the solution at the non-advection phase by f and
keeping in mind that / is a discrete solution with
respect to space at new time cycle, then, the
solution at the intermediate position between
spatial position of x and its immediately left (or
right) neighboring spatial position is connected by
a cubic polynomial of - .
S EN=aE-xV +HE-x) +(& - ,,L(;;‘ﬁ +fxn, @)
where £ is the space coordinate at the
neighborhood of spatial position of x, 3f/3d x is the
partial derivative of f(x,f) with respect to x. On the
other hand, the solution at the advection phase
has the trivial form of flx,t+4)=flx-uM, ). As a
result, the substitution of £ with x-u4 into Eq. (4)
leads to the acquirement of the solution to Eq. (1)
at space x and new time cycle, {+4, as
FCxt+ At = al-udt)® + b-uAt +(-um)-af‘é+" . (6)
It should be noted that in Eq. (4) the value of
partial derivative df/4 x is used and this quantity,
at present, is still unknown. However, it can readily
be realized that when a partial differentiation with
respect x is performed on both sides of Eq. (1), the
following equation may be gained
It can be seen that Eq. (6) of ?//3x has the
similar form of Eq. (1). Likely, it is also divided
into the non-advection phase and the advection
phase. In the non-advection phase, 3 f/ 9 x is solved
for the use in the cubic polynomial interpolation.
In the advection phase, its solution may be found
by differentiating Eq. (4) with respect to £ and
substituting & with x-u 4 subsequently. The detailed
illustration is not recited and can be found

elsewhere. *”

3. Multi-materials System

The practical problems involving shock and
reactive processes usually present the co-existence
of multiple materials. Before pursuing numerical
solution to such system, the governing equations
of mass, momentum and energy should first be

Kayaku Gakkaishi, Vol. 63, No. 5, 2002 -~ 265—



established. For a multi-materials system
including N components that can be taken as
compressible fluids, one way for doing this is of

the following set of equations, *®

%?4-17-Vfa=fa(7g-—l)\7-ﬁ
M+H-V(f..p¢)=-fap¢‘7-ﬂ

)
%-4- i -Vii = -—le
o P

Q‘%’E& +i 'V(f;zpaea) = _j;paeav i - "npv i

where, o denotes a component within 1 to N, f
is the volume fraction of one component in total
volume, p is the pressure, p is the density, ¢ is the
specific internal energy, « is the vector of velocity.
K, is the bulk modulus of one component, K'is the
equivalent bulk modulus of total components, 7,
is the mass fraction of one component in a total
mass. The expressions for K,, K and 5, will be
given later. Naturally, there are valid that Zf, =/
and Zn,=! from definitions. It is noticeable that
Eq. (1) is not written in a conservative form but in
a non-conservative type favorable for being divided
into the non-advection phase and the advection
phase that are required by the CIP scheme.

After the establishment of the governing
equations for a multi-materials system, it is still
necessary to have knowledge of the equation of
state in order to make the system solvable. For a
single material system, the equation of state has
been known in one way or other ways, however,
for a multi-materials system, studies on this aspect
seem to be sparse. A general methodology to achieve
this goal is to assume that the components of
multi-materials system be in thermal and pressure
equilibria or only in pressure equilibrium, and then,
to perform the iteration procedures to obtain the
pressures. Needless to say that such treatment is
troublesome in program coding and more is time-
consumed in computation. Following Vorobiev and
Lomov’s point of view, ® a simple procedure for the
acquirement of pressure in the multi-materials
system will be introduced.

For ath component whose equation of state is
known, as first approximation, the pressure
variation at state (2, , V,) may be expressed as
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where, K, is the bulk modulus of ath component
which is given by -V, 7P, /7 V,. To the total
system, it is able to assume the same expression

AP_

for the variation of pressure. Hence, it is valid for

L. 4. B slmrlreL g

where, Kis the equivalent bulk modulus for the
system. According to the point of pressure
equilibrium, the variation of pressure in each
component is equal to that for the system, so, there
is obtained,

=[Z,{—] ©

On the other hand, owing that the work done
by pressure within the change of volume for the
system is equal to the sum of the work done for
each component with its individual change of
volume (in reality, it is the virtual work principle),
it leads to the acquirement of pressure as

£t
P=KYy -2l
g (10)
For the mass fraction of a component, it is given
by

o Pots
e == (1)

where, p represents the density of total
components.

4. Computational Examples
4.1 One dimensional impact problem

As a simple test for the application of the present
code, one dimensional impact problem is chosen to
demonstrate the computational ability of the code.
An aluminum block with a length of 25 mm
impacts a copper block with the equivalent length
at velocity of 2 km s™ from the left. The calculated
shock positions and pressures at several times are
presented in Fig. 1 (a). Theoretical shock amplitude
at the given condition is also plotted for
comparison. It is found that the shocks in
aluminum and copper steadily propagate with a
constant strength corresponding to the theoretical
value. At the beginning of the impact, somewhat
oscillation appears in the vicinity of the interface
during the calculation, however, it soon vanishes
and the reasonable pressure is obtained. To further
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Fig. 1 shock propagations in one dimensional impact of aluminum and copper. (a) shock profiles; (b)
comparison with result from Lagrangian code.

examine the shock profile, the same problem was
calculated with a Lagrangian code. Two shock
profiles at time of 2.5 us after impact are presented
in Fig. 1{b) and can be found in good consistency
with each other.

4.2 Two dimensional impact problem

In the two dimensional impact calculation, the
case is considered that a rectangular copper 25
mm long and 5 mm wide penetrates a plate of
aluminum with the height of 45mm and the
thickness of 5 mm. The impact velocity of copper
is assumed to be 2 km s”. The calculation should
treat the interactions of various waves as well as
the motions of the boundaries. Vacuum is
introduced as one material to account for the
motions of the free boundaries. Fig. 2 shows the
penetration processes at different phases of time
in the forms of isopycnics. After short time of
impact, as shown in Fig. 2(b), it is clearly seen
that shock propagations occur in both copper
impactor and aluminum plate. With the increase
of time, it is visible that a large rarefaction area
at the back of the aluminum plate opposite the
impact region appears. This is resulted from the
assumption of the materials with fluid-like
behavior at present. In practice, the materials are
at the state of elastic-plastic flow, so it is the place
in which many fragments form due to the spalling
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appearance. Therefore, the elongation shape of the
plate is obtained.

4.3 Blast wave propagation

Using MARS2D, a blast wave problem is
computationally performed to demonstrate the
calculation on the strong shock propagation. A 10
mm square TNT is exploded in the air with
dimensions of 100 mm times 100 mm area. TNT
is assumed to be exploded under constant volume
model. This implies that the initial TNT gases are
with density and specific internal energy
equivalent to solid TNT density and its detonation
heat. Several typical blast wave images from the
calculation are presented in Fig. 3. The high
pressure TNT gases cause a strong shock in the
surrounding air and subsequently the shock
spreads outward to expand its affecting circle.
From those graphical results, it can be seen that
the calculation is successful to some extent. The
interactions of blast waves as well as the
propagation of blast wave under complicatedly
geometrical condition are left for the future work.

4.4 Cylinder expansion test

Cylinder expansion test is a standard experiment
to determine the parameters in Jones-Wilkins-Lee
(JWL) equation of state for detonation products,
and also is a good measure to assess the
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(0) t=3.8us

(d) t=8.8 s

Fig. 2 Calculated processes in two dimensional impact of copper and aluminum.

performance abilities of the explosives. The
numerical simulation to such experiments may be
a good test to make a code be applicable to reactive
materials because the calculation must deal with
the detonation of the explosive. In the calculation,
the plane geometry is used in place of the
axisymmetric shape in experiment for simplicity.
The explosive is the nitromethane and the copper
is used for the metal confinement. Outside the
copper and nitromethane is the vacuum. The
detonation process of nitromethane is modeled by
a simple burn model called C-J volume burn. The
nitromethane is of a width of 50.8 mm and 300
mm long. The copper is 300 mm long and 2.6 mm
thick. Fig. 1 shows several snaps obtained from
the calculation. The detonation of nitromethane
and the expansion of copper are clearly
demonstrated. In the area near the initiating end,
even the copper deforms to such extent, its shape,

however, is completely kept. It illustrates that the
CIP scheme indeed has a high capability in the
prevention of numerical diffusion. Fig. 5 gives the
profiles of pressures in nitromethane detonation
products along the centerline at several instants.
The propagation of the detonation wave is revealed
to be in a steady progress during the calculation
although the peaks are slightly lower than its
nominal detonation pressure. Some improvements
should be expected in the future.

5. CGoncluding Remarks

Developments of the Eulerian codes are
particularly beneficial to the solutions of the
problems involving strong shocks and large
deformations. However, because of its essential
feature of Eulerian formulation, it is desired that
Eulerian codes should be less numerically diffusive
and be of efficiency in the treatment of multi-
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Fig. 3 Typical images of strong shocks in air blast of TNT.

(c) t= 29.5us

(d) t=43.5us

Fig. 4 Calculated snaps of detonation propagation and deformation of metal plate.

materials. The combination of CIP scheme and a
simply technical treatment on multi-materials
makes MARS2D be a promising code in the family
of Eulerian codes. Several examples presented
demonstrate the capability of MARS2D in the

calculations of problems involving strong shocks
and large deformations. Owing to its initial phase
in development, much work will still be done in
the future in order to make it applicable to the
more realistically practical problems.
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Fig. 5 Calculated pressure profiles in detonation
products of Nitromethune.
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