硝酸塩の溶解度(第14報)

硝酸アンモニウム-硝酸ナトリウム-硝酸カルシウム-水系の相平衡

原 泰毅*, 桑村こずえ*, 松本理子*, 中村英嗣*

研酸ナトリウム-研酸カルシウム-水3成分系状態図を作成し、さらに先に報告した2つの3 成分系溶解度のデータを用いて、0℃および-10℃における硝酸アンモニウム-硝酸ナトリウ ム-研酸カルシウム-水4成分系の固・液平衡状態図を残留法によって作成した。これらの系で は硝酸カルシウムのみが含水塩(Ca(NO₃)₂•4H₂O)となり、その他復塩の形成は認められなか った。

これらの状態図を用いて、4成分混合物の状態や液相および固相の組成の温度変化等を知る ことが出来る。

1. 諾 曾

硝酸アンモニウム(以下ANと略記)を主な酸化剤と する含水爆薬や過飽和のAN水溶液を分散相とするエ マルション爆薬では、有効酸素量を増す目的^{1),2)}やエ マルションの安定度を高くするために³⁾, ANに他の酸 化剤を混合して用いられている。本研究はこのような ANを主とする多成分系の溶液状態を知る目的で、0 じおよび-10℃におけるAN-硝酸ナトリウム(以下 SNと略記)-硝酸カルシウム(以下CNと略記)-水4成 分系に関連する相平衡状態図を作成した。

この4成分系の状態図を完成させるためには、それ ぞれの温度における次の3つの系の3成分系状態図の データが必要である。すなわち、(A)AN-SN-H₂O、 (B)AN-CN-H₂O、(C)SN-CN-H₂Oである。(A)および (B)の系についてはすでに報告⁽¹⁾した。また(C)の系に関 しては、0℃以上の温度におけるデータはすでに報告 ⁵⁾されているので、本研究の目的に応じた。0℃と一 10℃の状態図について報告する。

- 2. 実験
- 2.1 試料

AN, SN およびCN はそれぞれ市販の特級試薬を 水で再結晶して使用した。

2.2 状態図の作成

3 成分および4 成分系の状態図はいずれも残留法⁶⁾ によって作成した。即ち、各種の塩あるいはその混合

平成3年2月20日受理 *九州工業大学工学部応用化学教室 〒804 北九州市戸畑区仙木町1-1 TEL 093-871-1931 内線446 物が液底体として存在するような毺々の組成の混合物 を作り、ときどきふりませながら恒温槽中に6時間以 上放置し、飽和溶液および固相を含む溶液を分析する 方法である。また、作図法は先に報告⁷⁷した4成分系 と同じ方法にした。

残留法における各塩の濃度の測定は以下のように行った。全塩の濃度を硝酸イオンの濃度として分光光度法⁰¹により決定し、水酸化ナトリウムを用いた導電率 滴定法によるアンモニウムイオン濃度よりAN 濃度を、 EDTAを用いるキレート滴定法⁰¹によるカルシウムイ オン濃度よりCN 濃度を決定し、SN の濃度を全塩濃 度からAN およびCN 濃度の差として求めた。 最後に 全量から全塩量の差として水分量を決定した。

3. 結果および考察

3.1 SN-CN-水3成分系の平衡

SN-CN-水3成分系の平衡状態における飽和溶液 および固相を含む溶液の、0℃および-10℃における 組成をTable 1とFig.1およびFig.2に示した。図中 の白丸は飽和溶液の組成を、瓜丸は固相を含む溶液の 組成を示す。両者が平衡状態にあり、2つの点を結ぶ 対応線と正三角形の交点が、その溶液と平衡にある固 相を示す。これらをTable1の最後の列にまとめた。

0 ℃において、上記の 2 点を結ぶ対応線は正三角形 の頂点(NaNO₃)および水と $Ca(NO_3)_2 を結ぶ辺上に集$ まる。即ち、この系で存在する安定な固相は SN と $CN の含水塩(<math>Ca(NO_3)_2 \cdot 4H_2O$)である。-10℃(Fig.2)においては前記の 2 つの塩に加えて、水が固 相として存在する領域が出来る。この系の特徴は SN よりも CN の溶解度が大きいので、図の左側の扇形よ

	1	Liquid phase(W	t.%)		Wet solid phase(Wt.%)		
Temp. (T)	NaNO ₃	$Ca(NO_3)_2$	H ₂ O	NaNO ₃	$Ca(NO_3)_2$	H ₂ O	— Solid phase
0	42.7	0	57.3	•••	•••		NaNO ₃
	30.5	13.8	55.7	61.5	7.9	30.6	NaNO ₃
	22.8	26.3	50.9	53.7	15.7	30.6	NaNO3
	15.3	38.4	46.3	47.8	24.0	28.2	NaNO ₃
	13.3	43.2	43.5	22.1	43.2	34.7	C^* + NaNO ₃
	9.5	44.7	45.8	6.3	55.5	38.2	С
	7.1	46.2	46.7	5.4	52.9	41.7	С
	0	49.6	50.4		•••	•••	С
- 10	39.5	0	60.5		***		NaNO ₃
	33.3	7.8	58.9	69.5	3.4	27.1	NaNO ₃
	25.5	16.8	57.7	61.1	8.3	30.6	NaNO ₃
	18.1	28.7	53.2	51.2	17.4	31.4	NaNO ₃
	15.7	34.9	49.4	45.2	22.1	32.7	NaNO ₃
	12.2	37.7	50.1	18.3	40.2	41.5	$C + NaNO_3$
	10.1	40.3	49.6	7.2	47.8	45.0	С
	7.4	42.1	50.5	6.6	48.3	45.1	С
	4.6	43.6	51.8	3.9	46.2	49.9	С
	0	45.9	54.1	•••	•••	•••	С
	21.8	0	78.2	•••	•••	•••	H ₂ O
	15.8	7.9	76.3	13.4	6.7	79.9	H ₂ O
	7.2	15.7	77.1	6.3	13.7	80.0	H ₂ O
	0	21.9	78.1		•••	•••	H ₂ O

Table 1 Solubility data for the ternary system $NaNO_3 - Ca(NO_3)_2 - H_2O$

 $C : Ca(NO_3)_2 \cdot 4H_2O$

りも右側の扇形が小さくなることである。

3.2 AN-SN-CN-水4成分系の平衡

AN-SN-CN-水4成分系の0℃および-10℃にお ける溶解平衡データをTable 2に示し、状態図をFig. 3およびFig.4に示した。下図は飽和溶液中の各塩の 組成を平面図で示し、上図は水分量を加えた立体図で ある。なお水分量は全塩量100gに対するグラム数で 示した。立体図の三角柱の3つの側面は、2種の塩と 水との3成分系の状態図であり、Table 1および既報 のデータの水分量を上記のように換算してブロットし たものである。いずれも固相を含む溶液の組成を示す 点(wet solid phase)は省略した。

図和溶液の組成が3つの曲面ADGE, BDGF, CEGF上にあるとき、それぞれの溶液は1つの固相と 平衡にある。例えば、ADGE上の溶液と平衡にある 固相はANである。同様にBDGF上にある溶液はSN と、CEGF上であればCN(含水塩)と平衡にある。こ の系の特徴はSNの溶解度が一番小さく、面BDGFの 面積が最も大きい。

面と面との接点即ち曲線DG, EG, FG上の飽和 溶液は211の固相と平衡にある。例えば飽和溶液の組 成がDG上にあるとき、この溶液と平衡にある固相は ANとSNである。

3 紐の塩が同時に溶液と平衡にあるのは、 G 点の組 成を持つ溶液(合致溶液)のみである。定圧、定温下に あるからG 点は不変点である⁷⁾。このように飽和溶液 の組成が存在する領域と、その溶液と平衡にある固相、 および定圧、定温下における自由度を Table 3に整理 した。

温度が-10℃に低下すると溶解度が減少するので, 立体図の水分量は増加するが、平面図の点D, E, F, Gおよび各点を結ぶ線はほとんど移動しない。これは 溶解度の温度依存性が各塩でほとんど同じであるから である。

飽和溶液の水分量を立面図に投影すると、 植々の混 合物の飽和溶液および固相の組成や、その温度変化お

	· · · · ·	Liquid pha	se(Wt.%)			Wet solid ph	ase(Wt.%)	·	0.111.1
(°C)	NH NO3	NaNO ₃	C•	H ₂ O*	NH 4 NO3	NaNO ₃	C*	H ₂ O*	Soud phase
0	55.1	30.1	14.8	53.0	64.7	26.7	8.6	30.1	AN* + SN*
	49.3	23.0	27.7	49.4	59.7	23.0	17.3	30.7	AN +SN
	46.2	18.9	34.9	42.9	24.8	56.7	18.5	22.9	AN +SN
	39.7	8.9	51.4	35.1	52.9	13.3	33.8	23.4	AN +SN
	38.0	5.5	56.5	32.6	27.2	3.7	69.1	37.0	AN+SN+C
	21.7	13.8	64.5	53.2	14.0	27.5	58.5	41.4	SN +C
	7.4	20.4	72.2	6 9 . 7	3.0	43.1	53. 9	39.3	SN +C
	41.7	0	58.3	35.7					AN +C
	0	23.5	76.5	77.0					SN +C
	60.3	39.7	0	56.5		•••	•••		AN + SN
- 10	51.8	30.2	18.0	63. 1	60.4	25.8	13.8	50.3	AN +SN
	47.7	22.4	29.9	60.8	53.8	28.1	18.1	37.7	AN + SN
	42.0	15.8	42.2	52.9	39.5	33.5	27.0	32.8	AN +SN
	39.1	11.2	49.7	44.7	44.5	15.9	39.6	34.4	AN +SN
	37.9	9.5	52.6	46.8	41.3	15.4	43.3	34.7	AN+SN+C
	34.8	10.4	54.8	54.7	25.6	31.6	42.8	39.4	SN +C
	23.7	12.6	63.7	68.0	20.4	19.3	60.3	56.5	SN +C
	11.4	16.0	72.6	77.4	8.8	30.5	60.7	50.4	SN +C
	45.2	0	54.8	49.3		•••		•••	AN +C
	0	24.4	75.6	85.4	•••	•••		•••	SN +C
	57.7	42.3	0	60.6		•••		•••	AN + SN

Table 2 Solubility data for the system $NH_4NO_3 - NaNO_3 - Ca(NO_3)_2 - H_2O$

*H₂O/Total salts(Wt./Wt.)

AN; NH_4NO_3 , SN; $NaNO_3$, C; $Ca(NO_3)_2 \cdot 4H_2O$

Fig. 3 Phase diagram for the four component system $NH_4NO_3 - NaNO_3 - Ca(NO_3)_2 - H_2O$ at 0C

Phase diagram for the four component system $NH_4NO_3 - NaNO_3 - Ca(NO_3)_2 - H_2O$ at -10 C

Table	3	Solid	phase	and	degrees	of	freedom	at	isothermal	and
			is	obari	c conditio	m i	n Fig. 2 a	nd	Fig. 3	

Area	Solid phase	Degrees of freedom
ADGE	AN	2
BDGF	SN	2
CEGF	CN	2
DG	AN+SN	1
EG	AN+CN	1
FG	SN+CN	1
G	AN+SN+CN	0
D	AN+SN	0*
Е	AN+CN	0*
F	SN+CN	0*
	1	

*ternary invariant point

```
AN; NH_4NO_3, SN; NaNO_3, C; Ca(NO_3)_2 \cdot 4H_2O
```

Temp.	Salts	Liquid	phase	Solid phase		
(r)		Calcd.	Found	Calcd.	Found	
0	AN	61	60.7	100	100	
	SN	23	23.4	0	0	
	CN	16	15.9	0	0	
-10	AN	55	53.1	100	100	
	SN	27	29.1	0	0	
	CN	18	17.8	0	0	

Table 4 Equiribrium data for the mixture of $NH_4NO_3/NaNO_3/Ca(NO_3)_2/H_2O = 83/10/7/20$

AN; NH_4NO_3 , SN; $NaNO_3$, C; $Ca(NO_3)_2 \cdot 4H_2O$

よび水分の移動にともなう組成変化を知ることが出来る⁷¹⁰⁰。先に報告した方法と同じ手法によって、混合物AN/SN/CN/H₂O=83/10/7/20(wt./wt.)の各温度における溶液および固相の状態を状態図から読み取り、 実測値と比較してTable 4にまとめた。

4. 結 論

0 じおよび-10じにおける SN-CN-H₂O 3 成分系 および AN-SN-CN-H₂O 4 成分系の平衡状態図を作 成した。この系においては CN の含水塩が存在するが、 複塩の生成は認められなかった。

これらの状態図を用いることによって、 11本の混合 物の平衡状態における溶液や固相の組成を知ることが 出来る。一例として、モデル混合物の飽和溶液および 固相の組成を状態図から読み取った値と実測値とを比 較した結果、良い一致を見た。

文 献

 C. O. Leiber, 内田文宏訳, 工業火薬, 46, 270(1985)

- 2)原 容證,秋吉美也子,中村英嗣,工業火薬, 49,152(1988)
- 3) 原 泰穀, 高橋勝彦, 中村英嗣, 竹内文雄, 酒井 洋, 長田英世, 工業火薬, 45, 129(1984)
- 4) 中村英嗣, 原 泰毅, 長田英世, 工業火薬, 43, 63(1982)
- W. F. Linke, "Solubilities of Inorganic and Metalorganic Compounds-Seidell", vol. 2, American Chemical Soc., (1965) p. 621
- 6) 中森一該,"近代工業化学13 無機工業化学",朝 倉書店(1970)p. 199
- 7)原 泰毅,安部浩志,中村英野,広崎義一,枝村 康司,長田英世,工葉火薬,47,91(1986)
- 8) 浜口 博, **県田六郎, 遠藤信也, 分析化学, 7,** 409(1957)
- 9) 日本化学会北海道支部編, "水の分析", 化学同人 (1986) p.187
- 10)原 泰敏,三好弘明,中村英阳,砂川智司,工菜 火菜,52,317(1991)

.....

Solubilities of Some Nitrates in Aqueous Solution (XIV)

Phase Equilibrium for the System Ammonium Nitrate-Sodium Nitrate-Calcium Nitrate-Water

by Yasutake HARA*, Kozue KUWAMURA*, Yoshiko MATSUMOTO* and Hidetsugu NAKAMURA*

The phase diagrams for system ammonium nitrate-sodium nitrate-calcium nitrate-water were determined at 0° and -10° by the residual method.

The results indicated no complex salt, solid solution, or hydrated formation except Ca $(NO_3)_2 \cdot 4H_2O$ at these temperatures.

The equiribrium situation of four component mixtures, and the composition changes of liquid and solid phase with temperature can be predicted from these diagrms.

(*Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, Sensui-cho, Tobata, Kitakyushu 804, Japan)