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Abstract

A theoretical formula has been presented,

which describes relations among the
maximum detonation velocity D, any stable
detonation velocity D), reaction time £, in
(detonation) reaction zone, the thickness of
wall ¥, the velocity of the shock waves in
the wall material v and the maximum rea-
ction time /,, based on the assumption that
the duration of the reaction time is elongated
by the existance of the solid wall, where
the wall begins to move only after a shock
wave, whose velocity is v, has travelled

from the inner surface to the outer one, The
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assumption is consistently applied to both the
so-called thin and thick wall. Also a theore-
tical formula has been presented, which
describes relations between D,, D, radius
of a cartridge R, critical radius R., below
which no detonation occurs, t,, the critical
reaction time ., the velocity of sound in
detonation products v, based on the assum-
ption that the part of a charge around the
critical diameter acts as a case. A general
equation, in which both the thickness of a
case and the diameter of charges vary, has
deen constructed superposing the two cases
described above.

The validity of the fundamental formulas,
which contain ne arbitrary constant in con-

trast to the previous formulas described by
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various authors, have been verified by a
series of experimental data due to Copp,
Ubbelohde, Cook et al.

tm, fe, the maximum reaction zone length
Xa, the critical reaction zone length X, have
been calculated by use of these formulas,
which may be called “the variable reaction
zone length theory”. X, T are found to
be much longer than have been supposed to
be by many previous theories.

The general equation derived by the pre-
sent theory is:

D =_[( s R,) T e ST
(Dm)_l_ t“ Va tm + e !m J
1 R_}en

+( Valm )R' fg=f»+ -'l:a.___

£.1. Introduction

(1) The theories proposed by H.
JonesV* and H. Eyring assume the con-
stancy of the length of the reaction zone X
while in the present theory which may be
called “the wvariable reaction-zone-length
theory,” the lengith of the reaction zone is
assumed to vary from the maximum reaction
zone length X, which corresponds 1o the
maximum detonation velocity Dz, to the
minimum or critical reaction zone length X..
The reaction time is also assumed, in the
present theory, to vary from the maximum
tw to the minimum or critical Z.

(2) The theories of Jones and Eyring

-t
L

H. Jones: Proc. Roy. Soc., A. 189 pp. 415-
426 (1947).

2) John L. Copp and A. R. Ubbelohde: Trans.
Faraday Soc. XLIV. 646-669 (1948).

J. Taylor: Detonation in Condensed Explo-
sives: Oxford, The Clarendon Press, p. 150
(1952).

4) Henry Eyring, Richard E. Powell, George H.
Duffey, Ransom B. Parlin: Chemical Reviews,
45, 69-179 (1948).
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assume that the thickness of casings Y or
the radius of charges R change the mass
equation and the momentum equation among
the fundamental equations of the theory of
detonation while in the present theory only
the energy equation is influenced by Y and
R.

(3) In the theories of Jones & Eyring
no straight-forward equations between D and
Y or R are deduced in analytical forms and
a number of practical formulas of limited
application have been suggested based on
numerical approximation, that is, the results
were semi-empirical equations containing
some arbitrary constants whose physico-
chemical meanings are not necessarily clear
while in the present theory the equations for
D, Y and R contain no arbitrary constant
and the variables contained in the equations
have definite physico-chemical meanings and
can be determined numerically by a series
of experiments on D and Y or K.

(4) In both classical theories the func-
tions of the so-called thin wall and the thick
one are different. In the former the inertia
of the wall plays a main part and in the
latter case the shock wave within the wall
plays a main part while in the present theory
the effects of connnement in both cases are
due to the action of the shock wave, however
thin the wall may be. And the effect of R
on I is also interpreted as a confining action
of a sheath of an explosive charge around
“the critical radius of a cartridge.”

The defects (1)~(4) of the classical
theories have correlations. Once we assume
(1) a constant value of X (and #), which
means a fixed position of Chapman-Jouguet
plane, then (2) the Hugoniot energy equa-
tion can not be modified drastically and (3)
the calculations become complicated in
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dealing with the two equations, the mass and
‘momentum equations, instead of one energy
equation and (4) to explain the effects of
-the radius, the thickness ‘of cases different
-mechanisms and different equations must de
introduced for thin and thick walls because
X (and ¢) is assumed constant. In contrast
‘to this, the present theory assumes that X
(and ¢#) varies thus leading to one mechanism
or a general equation which covers all
-effects of the radius, thin and thick walls.

(5) R. Schall® discussed the stability of
‘lower detonation velocity on the hypothesis
‘that X is proportional to 1/D while in the
present paper X is assumed to be increasing
" -with D

(6) M. A. Cook® introduced the idea of
-the detonation head or the geometrical model

and assumed that
t=4cd'|3D

where c¢ is a proportionality constant between
zero and 1.0 in an assumption hi=cd’=length
of the detonation head, and d’ is empirically
found to be: &’=2R—0.6 cm. In the present
theory no arbitrary constant has been used
in deriving the theoretical formulas.

(7) N. Manson™ discussed the effect of
R on D on the basis of the critical radius
below which no detonation occurs although

his theory did not give any description on

63 Rudi Schall: Zeitsch, fiir angewandte Physik,
6, 470-475 (1945).

£)-1. Melvin A. Cook, G. Smoot Horsley, W. S.
Partridge, W. O. Ursenbach: J. Chem.
Physics. 24, 60-67 (1956).

5)-2. M. A. Cook, Earle B. Mayfield, W. S.
Partridge: J. Phy. Chem. 59, 675-680
(1955).

6)-2. M. A. Cook. Ferron A. Olson: A, I. Ch.
E. Journal. 1, 391-400 (1955).

-7} N. Manson: Zeitschrift fiir Elektrochemie:

61, 386-592 (1957).
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the structure of the reaction zone while in
the present theory the critical radius plays
a definite part in the structure of the reac-

tion zone.

§.2. Theory on the effect of an
enclosure with the thickness ¥

§.2-1. Assumption of reaction zones with
variable lengths and the stability of
detonation

For a stable detonation with the detonation
velocity D there is an approximation equa-
tion®’ between the detonation velocity 1, and
the heat of detonation @,

Dnm— 2 IQR=D) (21)
If we put:

Q.=effective detonation heat available
on detonation passage in the case of
non-ideal detonation,

then the observed detonation velocity D is
determined not by @ but by Q,, that is, Q.
in the Hugoniot energy equation should be
replaced by Q.. while @. depends on the
degree of confinement which in turn influe-

nces the observed D,

D) VAT
or 1)“ —l'! '?"’;— (2‘2)
Qa N =45
o= raction of heat utilized on

detonation passage
(2-3)

In other words, to keep a detonation wave
at a constant velocity D the consumption of
the effective energy Q. is required, therefore,

8) (8) p. 89 Table 22.

2) Kumao Hino: Detonation velocity of explo-
sives. Journal of the Industrial Explosives
Society, Japan. (In Japanese) 8, 66-74 (1948),
9, 9-21, 47-60 (1348).
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(2-2) may be described as “the energy con-
sumption relation.”

Although there is no limitation to the
magnitude of reaction zone length X (and
reaction time ¢) from the standpoint of the
thermodynamical-hydrodynamical theory of
detonation, reaction zone should have some
definite length X for a given explosive cart-
ridge under a given condition (case, radius.
loading density). Below this certain value
of X the effective heat evolution may not be
enough to support the stable detonation while
above this value of X the expansion of the
decomposed explosive makes the elongation
of X" impessible. X can vary over a wide
range when cases or the radius change.

Under a given condition:
X=—=const=2X, (2-4)

Reaction time ¢ is described as follows:
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For a given explosive, X,x and D, have
fixed values independent of the degrees of
the confinement and the radius of charges.

Therefore

( ’;‘ )=c0nst. (2-9)
31

Or for a given explosive under u given
condition:

()b

(2-10) gives “the energy supply relation.'

const.
D

XiDe
>, ¢

(2-10)
When “the energy consumption relation” (2-
2) and “the energy supply relation™ (2-10)
are balanced at point P, in Fig. 1. the stabi-
lity of detonation is obtained because if we
increase the detonation velocity D, by a small
amount, then the energy consumption exceeds
the energy supply and ) begins to decrease

t=X/D (2-3) and vice versa.
Then for a fixed value of X
B 15~ e
r;=4\1!D (2-6)
Let us assume, to a first approxima- o
“ = H Prastia of
tion, that the fraction of the effective wratlels | Sengy ssnsumtion
* s T 3 1 2 P L L
detonation heat available on detona- e %o o)
» sy o Bome i Baergy mpply
tion passage is' proportional to the s uu.(%‘:‘l”.&"'ﬁ
reaction time f, " '% aritisal detonation velsatity
LA
0 () e
N= Q_‘_= & (2-7) g.sh  iateraedlate sase
Qu  tm

where: fn=maximum reaction time,
As the total energy is utilized at
X=X., X becomes the same with
“the constant reaction-zone-length”
assumed in the classical treatment of
Jones and Eyring.
Combining (2-5) with (2-7):

—on=( %))

= XulDm
(2-8)
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In Fig. 1. the curve (1) shows “the energy
consumption relation,” while curves (2) and
(3) show “the energy supply relations” for
different reaction zone lengths. The point
P, indicates the case of the ideal detonation
velocity where maximum detonation velocity
Dy is obtained with maximum reaction zone
length X, (and the maximum reaction-time
tw). The curve (3) shows an intermediate
case, where by a poor confinement or by a
smaller radius of a charge, an intermediate
detonation velocity ), is obtained with a
shorter reaction zone length X, (and a shorter
reaction-time ¢,). The curve (2) represents
the case where the lowest possible detonation
velocity (the critical detonation velocity) D.
is obtained for a critical radius of a charge
R. with
length or the critical reaction zone length

the minimum reaction zone

X: (and the minimum reaction-time or
‘the critical reaction-time ¢£,). The meeting
points of the two groups of curves (the
energy consumption and supply) give the
«corresponding detonation velocities /1),
and D,

under respective conditions.

respectively which are stable
§.2-2 Theoretical formulas

In the present theory no discrimation
between the so-called thin wall and the
thick wall is necessary. In Fig. 2. case
(1) shows a bare charge with reaction
The
radius of a bare charge is R. The case

time ¢, (reactionzone-length X,).
(2) shows how a thin wall elongates the
reaction-time and the reaction zone by
an amount f. and X. respectively.

The value of ¢ may be assumed to
be as follows.:

(2-11)
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where:  Y=thickness of wall
ve=yelocity of shock wave within
wall.

(2-11) is

an effective movement of a wall occurs only

based on the assumption that (1)

at E the point of maximum heat development,
that is, at the end of a reaction zone, (2)
the wall does not move until a strong shock
wave developed at a point E propagates
through it into an outer surface. however
thin the wall may be.

Because of an extremely rapid action of
the detonation even for the thin wall the
inertia of the wall does not determine the
movement of the wall but the propagation of
a shock wave comes first. The reaction-zone-

length is elongated by the following amount:

[Caze 1.) Bare alufﬂ
ef radius A = Cirsction of detonaticn

{1} Shortest resstion ~Fasctice sone- -+
zone r lengtn
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.\-u-=f-eD (2‘12)

However, both f.. and X, have their upper
limits represented by the following equation
because the total time of reaction #; or the
total reaction-zone-length X can not exceed
the maximum reaction-time £, and the maxi-
mum reaction-zone length respectively.

-

ti=tyt+te=1+ S yah n (2-13)
or YZvu(tm—1ty) (2-13)
X=X+ X=X+ -1 DX (2-14)
or Yé,%"— X=X (2-15)

The combination of the equations (2-2)
(2-7) and (2-13) gives the following rela-

tion.

DL ity Y Ve
Dﬂ H"/ -\ _"" ?_ A tm
(2-16)
or (b%)'=.-1+31‘ (2-17)
where:.  A=f/ta (2-17Y
B=1/(vetm) (2-17)”

(=)L)

While substituting (2-12) into (2-17)", we
have:

(5o =G o)+ ()=o)

(2-18)

In Fig. 3, (D/Dw)*~Y gives a straight line
whose inclination is as follows:

1 Dy
el Ural _mm

(2-19)

From (2-19) we may evaluate the maxi-
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)

|
Yy x Vo(ta=®s)
upper-limit-thiciness

T thickness of wall (including
thin and thick]

Fig. 3. Effect of thickness of wall on
detonation velocity (diameter of
explosive constant)

mum reaction-time 4, and the maximum
reaction-zone-length respectively as follows

knowing the values of vw and D...

tm= . (2-19)
T taAN o
y Dy 1 2
= - — 92-19)"
Xn ( T ) tan o &1

In Fig. 3. the value of A=t,t, is easily
found, therefore, we may find the reaction-

time £, of a bare charge as follows:
fo=Alm (2-20)

The reaction-zone-length X, for a bare

charge is:
Xo=t,D, (2-20Y
Above @ certain value of
Y=Y.=v(lm—1t;)- (2-13)

the increase of Y brings about no increase
of the detonation velocity D and Y, may be
defined as “ the upper-limit-thickness.” Above
this point we enter the so-called “ thick wall™
in classical theory, while below Y. we are
dealing with the so-called “thin wall” alth-
ough in the present theory both cases are

covered by one equation.
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Teelullen O.% ;_;g L. %0ea

T oo mEiskaess 0f steel wall

Fig. 4. 60/40 Amatol in a steel casing
(R=2.53 cm) (Data form Copp
& Ubbelohde)

§.2-3. Comparison with experimental data
of Copp and Ubbelohde.

In Fig. 4. experimental data on 60/40
Ammatol (TNT 402, coarse NHNO, 6022)
due to Copp and Ubbelohde® with the
radius of explosive R=253cm in a steel
casing have been plotted according to (2-17).
From Fig.4. we find:
tan a=0.872

==06080 m/sec.

ve=0940 m/sec.

ran( B0} L

"\ 5940 / 0872

,_.—_-Ts]{'}'ali—lb-‘ -sec=1.93x sec.

while

=1.17 cm.

Also from Fig. 4.
A=t,[t-=0843 therefore
1,=0843 ¢,
=0.843x 1.93=1.63 x sec.
X:=1.63%x10"*%0.558 x 10*=0.91 cm
Yi=vu(ta—12,)=0.594(1.93—-1.63)
=0.178 cm.

From Fig.4. Yu is found to be 018 cm in
& good agreement with the calculated value.
From Copp's data. Y,=0.2cm.

Copp & Ubbelohde report that =331 p

Kumao Hino 175

Fig. 5.

Structure of bare charges whose
radius is bigger than theoretical
radius

sec. by use of the equation of Jones that is,
the case of “thick wall.”

§.3. Theory on the effect of the
radius R of charges

§.3-1.
Let us assume that there exists a critical

Assumption

radius R. of a cartridge below which no
stable detonation occurs. At a radius of R.
the detonation velocity is the critical detona-
tion velocity [),. At this critical radius the
reaction time #. is the shortest possible one.
As the radius of cartridges increases bigger
than R. as is illustrated in Fig.5, the reac-
tion time ¢ increases by the amount 7, due
to the wall effect of the part of a cartridge
Ry due to the wall effect of the part of a
cartridge R., that is, we may assume, as in
§.2., the outer part of a cartridge acts as a
wall around *“a charge of radius R. (critical
radius),” because the detonation velocity D
for R is determined by D in the axial core
where D attains the highest value on the
section of a cartridge. Then the similar
argument as in §.2. leads to the following

expression,

D[R

Dy ’ Im E2,

where
v.=velocity of the sound wave in detona-
tion products,
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where v, and v, are the specific volumes of
detonation products and the original explo-
sive. respectively. To a first approximation

v, is assumed to be a constant,

R.-=R—R¢ (3"3‘)

where
Ri..=thickness of an outer shell of a
cartridge around a ¢ritical radius
R=radius of (a total) cartridge
R.=critical radius
D=detonation velocity for a radius R
D,=maximum (or ideal or theoretical)
detonation velocity
fw=maximum reaction time
t-=critical (or minimum) reaction time

(DD =(te/tw)
+(R—Rf)f(t'r!u) (3 4 )
or (D}rl)m)==[’e;lfﬂ_1?ﬂ,(7.'ff.| )]
+[A/(vetm)IR (3-5)
or (D/Day=A+BR (3-5Y
where A=t tm— R [(velw) (3-3Y”
B=1j(t‘.f~) (3"5)’”

The equation (3-3) is represented as a
straight line with respect to (D/Dy)* and R
in Fig.6. The values of A and Bin (3-5)
may be easily found in Fig.6. Therefore,

Theory of relations between the detonation velocity of solid explosives
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Fig. 7. 50/50 Amato! (bare charge)
(Data from Cook et al.)
PR WA S A L
Iw Te e
or for the critical reaction time;
te=Aln+ & (3-6)
1 1
= = — 3-7
; vetana Tl (<=0
X=Dite+(5)D (3-9)
t=t.-+ o (3-9Y

As the total reaction time ¢ cannot exceeds
the maximum reaction time /[, we find:

fi=t.+ %;r.. or Rev(tm—1:)

(3-10)

Above a certain radius R, the detonation

velocity D does not increase when R incre-

ases. The value of R, is given by:

R-='.“,(f- "‘fr)+ Re
(3-10Y

Ru=(er)mu-+
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where w=upper-limit-radius.
§ 3-3. Comparison with experimental data
of Cook et al.
3-3-(1) 50/50 Amatol
Fig. 7. shows the results*’ on bare charges
of loading density

d=1.53 gl/em’.

tan a=0,0891
== g D...=——g— x 0.6351 = 10°
=0.529 x 10%cmsec.
= -—1—=21.2;c sec.
Ve tan ar

XNa=Dutx=0.6351 x 21.2=13.48cm
A=0.216
R.=1.75cm

t-=Atu+ f' =0.216%21.2x10"*

€

-

1570 -
0529 * 10-*=7.57 p:sec.

-

critical velocity=D.=4695m/sec.
4\'9.:’.- - 9=7.57 x 10-‘ x 0.4695 = 10;
=3.55¢m.
Ru=t'c(f“"’c)+ Re
=0.520 % 10%(21.2—7.57) x 10~°+1.75
=7.2141.75=8.96cm
From Fig.7. R.=88cm.
3-3-(2) 2-4-Dinitrotoluene.
d=0.95g/cm*®
Experimental data have been read from a
smoothed experimental curve D~R.
Fig. 8. shows the result. The caleulated
values of fa etc. are summarized in Table 2.
3-3-(3) TNT®* d=1.0g/czm’
Fig. 9. shows the result. The calculated

values are shown in Table 2.

177

T

R reiias o charge

Fig. 8. 2-4-DNT (bare charge)

(Data from Cock et al.)

:/9-6—-9-

Fig. 9. TNT (bare charge)
(Data from Cook et al.)
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§.4. Theory on the effects of cases
and the radius when both vary

An equation for this general case may be
easily deduced by superposing the cases for
§.2. (the effect of cases) and §.3. (the
effect of the radius of cartridges) as follows:

D _ fr,+(-R'” )-i—(—y‘\
T V Ve T |

Im

(4-1)

where
D=detonation velocity at radius R and
with casing thickness Y
D.=maximum detonation velocity
t.=critical reacticn time
R.=R—R.
R.=critical radius

where

v.=velocity of sound wave in detonation
products

Y=thickness of cases

vw=velocity of a shock wave in matenal
of casing

f,m=maximum reaction time

(_I_)_)’_(f_ Rf)_l_‘, Y, 19
Dy T Uy I T Im J
+( -1—-)1& (4-2)
t—rf'tm
or ( gm)”=.-1+nfe (4-3)
where:."l=(te—- R, )—1 -+—Y ! (4-3Y
Ve £ T e
= _]_'_ (4_3)”
Velm

The equation (2-17)” for the wall-eftect
and the equation (3-5) for the radius-effect
are the special cases of the general equation
(4-2) respectively.

10) M. A. Cock & W, S, Partridge : J. Phy.

Chem. 56. £73-6725 (1555).
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§.5. Application of the theory

§.5-1.
One of the applications of the theory
presented in this paper is to find the rela-

Principle

tions between the detonation velocity ) (and
the detonation pressure Pp which is of prac-
tical importance from the standpoint of the
theory and practice of blasting. Pp is easily
calculated, to a first approximation, when [
is known) and the thickness of cases Y or
the diameter of charges R from experiments
as few as possible.

For example let us consider bare charges.

(1) Find a detonation wvelocity D, for
radius R, and D. for R..

(2) Calculate the maximum detonation
velocity Dx or find it by experiments for &
much larger radius K.

(3) Plot (Dy/Da) and (D'/Dx)’ on
y-axis, R; and R; on the x-axis as shown
in Fig. 6. From the straight line EF find the

numerical values of @, and R,.

T e (5-1)
Velm
rl_' I{ﬂ -
TR (5-2)

Ru=vy(tn—te)+Re (5-3)

(4) Calculate the velocity of sound in
detonation products thermodynamically or to

a first approximation by the following equa-

tion.
=5 5 S
Te 6 Dm (J 4)
D. e
¢5) D -=0.75 (Cook) (3-5)
o ( g; )'=0.563 (5-5Y

In other words it may be stated that “the
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critical radius of explosive ‘charges is the
radius at which a cartridge detonates with
an effective heat of detonation which is about
one half of the maximum heat of deton-
tion.”

Then from Fig. 6. we can find the critical
radius R,.

(6) The critical reaction time #. is found
as follows:

From (5-2),

zc=:ltm+--§f- (5-6)

From (5-3),
rn=zn.-£";-R‘ =zm—% (5-7)
where Run=upper:limit-thickness of an
explosive shell around a

critical radius
( 7) The maximum reaction-zone-length:

Kumao Hino
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The critical reaction-zone-length :

4\’: =Dcr¢ (5‘9)

By use of the procedure described above
we may find the important characteristics of
explosive cartridges, by the minimum number
of detonation velocity measurements, which
have great practical and theoretical impor-
tance.
§.5-2,

In an ammonium nitrate permitted explo-

Example

sive, whose loading density 4=1.0g/em’, the
experimental 'data on R and D have been
found as shown in Table.1. In this case D,
may be supposed to be;

Dm 5‘? 3620[“!58 C.

Table 1. Ammon explosive

R om .85 1.25 1.6 2.0

2870

D m/sec 3240 | 3420 | 3620

From Fig.10. we find:

Table 2. Calculated characteristics of reaction zones in detonation of solid explosives

| ~ Previous theories

Explosives | The p_resent the.ory S T X cm
charge g - . * curved | det. [
bar Y Xn e Xm | Re | Do |nozle| one | head pogrleSirved
&) e X; | Du |(Jones)otte 4 front
< X Re | Ry | Ae | v |(Eyring)(Cook)
50/ 212 MseCliz4g  CMiggs  cmy ! 20 | '
v ) hade . _piga == an = 0.740 3 i | el 0.7
Amatol 757 —2b 3.55 3.50 .75 5.120 1.50 | 2.03 ((0.740) 4 1.7 (28.5) (1.5) (0 5)
. 262 A&78 . 1781 o
2-4=-DNT '1]"‘.:67‘;:2-0? (2.8 e=2.41 2. ==2,98 0.92 | 1.14 [(0.642) 2.9 | 1.5
(1) (238 . .[1.204 L3545 0.99 (0.7 0.0926 0.0432
TNT0.009cm{1.54 —+59°0594=2-03 g5 =1:59 1.16| 0.9 m“élﬁ ‘
A Tl o g [T S 7 S | <ot ‘ Ve ctzbiniess
TNT 0.14cmiiB.89 ** 5|7.35 R v “"‘5?1' 2l | 250 NOI69 | | wgh
(3) O2.00. L léis_ - 670 = 3.45 [(0.748 E | 2.08 | 0,96
TNT 0.20cm{z2.39— 1% [5.46 = 1+9452.45 —2-74| 245 | 3.45 [(0.745) |
Permitted 0 & B0 &
ammon |0 —1.77 S ~2.34 (220 =309 1.95 | 281 | 0.70/1.5~2.8]1.5~1.9 Posa| 083
explosive |~ 0 jl |
Theoretical 173 5 an {0.75)p ‘
values 22| i | | 5 _F

Note = experimental data
o assumed values

A as the straight line® is not obtained for (Dm/D)*~(1/R)* (Jones-Taylor) ¢ and X have

various values,

11
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0.5 |
|
I
C.E15 3
oite B"‘N%‘ - = 0.308
s
A= o368 Tpgeq, admit
L}
¥ A i ™
g 0.59 1,00 z.00
e
Critical
Tediug Rem
Eadius of cartrifpe
Fig. 10. Permitted Ammon explosive
d=1.0g/cm?® (bare charge)
R.=0.59m

A=0.385
B=tan «=0.308

Then: 2,=0.302 x 10°cm /sec.
1=10.75sec.
D,=0.272 x10%m/sec.
Xwu=3.8%m
(5-6)  7.=6.09sec.
(5-7) t.=6.08usec. X.=1.66cm

§.6. General rules on the reaction
time ratio {,/t. and the reac-
tion zone length ratio X, /X..

If we assume the following experimental
rule (6-1) among the critical and maximum
detonation velocity we may find some rules
of practical [use for the reaction time and

the reaction zone length.

Theory of relations between the detonation velocity of solid explosives
and the thickness of cases or the diameter of the charges

[Vaol. 19 No. 3

(1) Reaction time ratio
The ratio of the maximum reaction time
7w to the minimum (critical) reaction time

v is as follows:

t _(D_m)a 1
7 O \UDE S 075

(2) Reaction zone length ratio

=178 (6-2)

The ratio of the maximum reaction zone
length X, to the eritical (minimum) reaction
zone length X, is as follows:

~(Z =)
S\ NV,

Xm — I)m’m
X D

(€-3)

In Table 2. the results of the calculations
based on the present theory have been
summarized in comparison with the values
of the constant reaction time ¢ and the con-
stant reaction zone length caleulated by the

classical equations such as Jones and Eyring.
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