NO₂による芳香族ニトロ化反応機構

佐々木幹雄*, 阿久津好明*, 新井 充*, 田村昌三*

環境大気中での芳香族ニトロ化合物の生成過程を明らかにするとともに、 NO_2 による芳香族化合物のニトロ化反応機構に関する基礎的知見を得るため、 NO_2 によるペンゼン及びトルエンの液相ニドロ化反応についてジニトロ化物の生成挙動及びその反応中間体の生成熱及び電子密度計算を行なった。

その結果、 NO_2 によるニトロ化反応の中間体である σ -コンプレックスは、 NO_2 による水案引き抜き反応の他に、 NO_2 の付加をうけ、亜硝酸が脱離してモノニトロ化物を生成する可能性が示された。また、ベンゼンのニトロ化反応の場合には、この中間体はさらに 2 分子の・ NO_2 の付加および 2 分子の亜硝酸の脱離を経由してジニトロ化物を生成する可能性が示された。

1. はじめに

環境大気中でディーゼル車等から排出される多環芳香族化合物とNO₂とが反応し、発ガン性や突然変異性をもったニトロ多環芳香族化合物を生成し、生体に有害な影響を及ぼすことが最近問題になっている¹⁾²⁾³⁾。 従って、その生成機構を明らかにすることは、その生成を抑制する上で有用といえる。

著者らは¹⁰、NO₂による芳香族ニトロ化反応におよばす溶媒効果について検討した結果、この反応は溶媒の極性に強く依存し、四塩化炭素やジクロロメタンのような極性の小さい溶媒中では芳香族化合物(ArH)から・NO₂への一電子移動によって生じるカチオンラジカルの関与する機構で進行する可能性を示唆した。

$$ArH+NO_2$$
 神速
 $ArH+NO_2$ 一 $Ar+\cdot NO_2$ [$ArH+\cdot NO_2$]
 NO_2 $ArNO_2 + HNO_2$
 $ArNO_2 + ArNO_2 + ArNO_2$

しかし、ペンゼンのニトロ化反応ではニトロペンゼンの他にジニトロペンゼンの生成がみられたこと、また、同じ条件においてニトロペンゼンのニトロ化反応からはジニトロペンゼンの生成はみられなかったことから、ペンゼンのNO2によるニトロ化反応では中間

1992年3月3日受理

*東京大学工学部反応化学科

〒113 東京都文京区本郷 7-3-1

TEL 03-3812-2111 内線 7293

体である σ -コンプレックスに・ NO_2 が更に付加する可能性が示唆された 51 。

一方、1989年Pryorらは⁶、四塩化炭素中でナフタレンのニトロ化反応について検討し、ジニトロ化物の生成について・NO₂の多段階付加の機構を提案した。(スキーム2)

そこで本研究ではNO₂による芳香族ニトロ化反応 機構を明らかにするため、ベンゼン及びトルエンの NO₂によるニトロ化反応をジクロロメタン溶媒中で行 ない、ジニトロ化反応の生成物分布を調べた。また、 反応機構解明の一助とするため、ベンゼン及びトルエ ンのニトロ化反応中間体の生成熱及び電子密度の計算 を、分子軌道法を用いて行ない、反応機構について考 察した。

2. 实験方法

2.1 試 料

ベンゼン、トルエン及びジクロロメタンは和光純薬 工業㈱製の特級試薬を用いた。また、 $N_2O_4^*$ は高千 穂化学工業㈱製の100wt%ボンベを用いた。

2.2 実 繋

15℃の恒温水槽中にいれたコンデンサーを備えた100 ml フラスコ内に、基質 2 ml 及び N₂O₄10 ml をジクロロメタン15 ml とともに入れ、提拌下で 6 時間反応を行なった。生成物分析はガスクロマトグラフ(㈱島津製作所製GC-6 A型)を用いて行なった。

分析条件は以下の通りである。

検 出 器:FID

^{*}N₂O₄はNO₂とN₂O₄の平衡混合物で, 15℃では平 衡はほとんどN₂O₄側に偏っている。

キャリヤーガス: N2. 40ml/min

カ ラ ム:ステンレスカラム 3 mmø×2.5 m

充 墳 型:シリコン OV 101 5 wt%

担 体:ユニポート HP 60/80 mesh

注入口温度:210℃

カラム温度:140~170℃

3. 実験結果と考察

NO₂によるベンゼンのニトロ化反応からのジニトロ生成物の分布を、硫硝混酸によるニトロベンゼンのニトロ化反応からのジニトロ生成物の分布"とともにTable 1に示す。NO₂によるニトロ化反応の場合は、

Table 1 Isomer distribution in the dinitration of benzene with NO₂ in dichloromethane

Isomer distribution	this work (mol%)	ref. ⁷⁾ (mol%)		
o-Dinitrobenzene	75			
m-Dinitrobenzene	25	88		
p-Dinitrobenzene	0	5		

ニトロペンゼンからジニトロペンゼンは生成しない上に、生成物分布も硫硝促酸によるものと全く異なっている。このことは、NO2によるニトロ化の場合のジニトロペンゼンは、ペンゼンから、ニトロペンゼンを経由して生成するのではなく、新たな機構で生成する可能性を示している。その一つの可能性として、ペンゼンに・NO2が親電子付加して生成した中間体であるのコンプレックスにさらに・NO2が攻撃して直接ジニトロペンゼンを生成する機構が考えられる。

一方、トルエンのNO₂によるニトロ化反応ではジェトロ化物は極微量しか生成しなかった。

4. 分子軌道法による計算結果と考察

NO₂によるペンセン及びトルエンの異常なジニトロ化の挙動に関する知見を得るため、ペンゼン及びトルエンのNO₂によるニトロ化反応の中間体と考えら

れるσ-コンプレックスの生成熱及び電子密度を、半 経験的分子軌道法MOPAC Ver.5のPM 3法⁰を用 いて計算した。ニトロ基をベンゼン環上に付加位型の 水素と対称に配置した初期構造を入力し、プログラム 内蔵の方法で最適化した。計算は東京大学大型計算機 センターHITAC M-682Hで行った。

4.1 ケコンプレックスの生成熱と電子密度

ベンゼン及びトルエンのo-およびp-位に・ NO_2 が付加した σ -コンプレックス(1), (2)及び(3)について PM 3 計算を行った(Table 2)。ベンゼンの σ -コンプレックスについては、C2、C4、C6の炭素の電子密度が高く、それゆえこの中間体に・ NO_2 が攻撃するのは、H1の引き抜きかあるいは σ -またはわずかにp-位へのラジカル的付加であると考えられる。H1引き抜きからはニトロベンゼンが生成し、C2およびC6への・ NO_2 付加からは、化合物(4)および(5)が生成する(式1、(4)は trans 付加型, (5)は cis 付加型)。

$$\begin{array}{c} H \longrightarrow NO_2 \\ + NO_2 \\ + NO_2 \\ \end{array} + HNO_2 \\ H \longrightarrow NO_2 \\ H \longrightarrow NO_2 \\ \end{array}$$

また、トルエンについては、最初の・NO2付加段階は弱い親電子的傾向を示すと考えられるので、0-個換体とp-個換体を計算した。その結果、0-個換体についてはC3及びC5の電子密度が高い値を示した。従って、この中間体からは、・NO2による水索引き抜きからの生成物である0-及びp-=トロペンゼン、0-個換体のC3への・NO2付加による生成物である化合物(6)、p-個換体のC3及びC5への・NO2付加による生成物である化合物(7)を生

成すると考えられる(式2,3)。

いずれの場合も、σ-コンプレックスに対する・NO2の作用が、水楽引き抜き反応と環への付加反応のどちらが優先するかが重要な問題になる。以下は、・NO2がσ-コンプレックスに付加したときに生成する化合物について生成熱及び電子密度の計算を行ない、実験事実と比較してこの付加反応の可能性について検討した。

4.2 化合物(4), (5), (6)および(7)の生成熱及び電子 密度

ベンゼン及びトルエンのニトロ化反応における中間 体であるσ-コンプレックスに・NO₂が付加したときに 生成すると考えられる中間体(4), (5), (6) および(7) の 生成熱及び電子密度を計算した(Table 3)。

(4) および(5) の生成熱の比較から(4) の trans 付加の

ほうが生成しやすいことが示唆される。従って、以下の計算はすべて・NO₂はtrans 付加の場合について行なった。

化合物(4)において、・NO2による水素引き抜き反応が主反応であるとすると、この中間体から生成する物質はロージニトロペンゼンであり、これは15℃、ジクロロメタンの溶媒中におけるペンゼンのNO2によるニトロ化反応の実験結果(ロー: mー: pー=75:25:0 (mol%))と一致しない。従って、電子密度の低いHIがとなりのNO2とともにHNO2として脱離し、ニトロペンゼンを生成する反応が主反応であると考えられる(式4)。また、・NO2が電子密度の高いC3またはC6に付加して、テトラニトロ化された中間体(8)を生成する可能性も考えられる。

化合物(6) および(7) においても化合物(4) と同じよう

Table 2 Heats of formation and net atomic charges of the compounds (1),(2) and (3)

		(1)	Co	npounds (2)		(3)
Heat of formation / kcal mol-1		40.32		31.05		29.63
	C1	-0.210	C1	-0.128	C1	-0.081
	C2	-0.172	C2	- 0.197	C2	- 0.058
	C3	-0.062	C3	- 0. 177	СЗ	- 0. 156
Net atomic charge	C4	-0.100	C4	- 0.058	C4	- 0. 203
	C5	-0.063	C5	-0.098	C5	- 0.176
	C6	- 0.149	C6	- 0.066	C6	- 0.058
	N	+1.211	C7	-0.075	C7	- 0.062
	01	-0.585	H1	+ 0.061	H1	+ 0.057
	O2	-0.564	H2	+ 0.055	H2	+ 0.049
	H1	+0.125	Н3	+0.053	НЗ	+ 0.052
	H2	+0.122	N	+1.205	H4	+0.110
	Н3	+0.109	01	- 0.586	H5	+ 0.116
	H4	+0.111	02	- 0.563	N	+1.206
	H5	+0.109	H4	+ 0.125	01	- 0.586
	H6	+0.117	H5	+0.119	02	- 0.564
			H6	+ 0.108	H6	+ 0. 123
			Н7	+0.111	H7	+ 0.119
			Н8	+0.111	Н8	+0.110

Table 3 Heats of formation and net atomic charges of the compounds (4),(5),(6) and (7)

-	Compounds				
	(4)	(5)	(6)	(7)	
Heat of formation / kcal mol-1	21.20	21.82	11.90	11.7	
	C1 -0.304	C1 - 0.261	C1 -0.106	C1 -0.03	
	C2 - 0.249	C2 -0.245	C2 - 0.250	C2 - 0.07	
	C3 - 0.171	C3 - 0.179	C3 - 0.245	C3 - 0.13	
	C4 - 0.060	C4 - 0.053	C4 - 0. 192	C4 - 0.30	
	C5 - 0.085	C5 - 0.097	C5 - 0.034	C5 - 0.24	
	C6 - 0.126	C6 - 0. 121	C6 -0.078	C6 - 0.18	
	N1 +1.231	N1 +1.242	C7 - 0.075	C7 - 0.07	
•• .	O1 - 0.588	O1 -0.588	H1 + 0.057	H1 + 0.05	
Net	O2 -0.560	O2 - 0.558	H2 + 0.058	H2 + 0.05	
atomic	H1 + 0.172	H1 + 0.120	H3 + 0.058	H3 + 0.05	
charge	N2 + 1.221	N2 +1.237	N1 +1.212	H4 + 0.11	
	O3 - 0.548	O3 - 0.561	O1 - 0.758	H5 + 0.13	
	O4 - 0.582	O4 - 0.580	O2 - 0.553	N1 + 1.22	
	H2 + 0.143	H2 + 0.128	H4 + 0. 142	O2 - 0.58	
	H3 + 0.135	H3 + 0.132	N2 +1.224	O3 - 0.56	
	H4 + 0.115	H4 + 0.118	O3 - 0.566	H6 + 0.17	
	H5 + 0.120	H5 + 0. 121	O4 - 0.570	N2 + 1.21	
	H6 + 0.135	H6 - 0.144	H5 + 0. 123	O3 - 0.55	
			H6 + 0.134	O4 - 0.58	
			H7 + 0.117	H7 + 0.14	
			H8 + 0. 121	H8 + 0.13	

にHNO₂の脱離が主反応になると考えられる。電子密度の低い水楽ほど脱離されやすいと考えると、化合物(6)はH4ととなりのNO₂、(7)はH6ととなりのNO₂が脱離してo-及びp-ニトロトルエンを生成すると考え

$$\begin{array}{c} H \longrightarrow NO_2 \\ NO_2 \longrightarrow \\ NO_2 \longrightarrow \\ \end{array} + HNO_2 \qquad (4)$$

られ、15℃、四塩化炭素中におけるNO₂によるトルエンのニトロ化反応の実験結果(モル比でσ-: m-: p-=54:6:41)⁵¹と対応している(式5, 6)。

また、・NO₂がさらに付加してテトラニトロ中間体を生成する可能性は、CH₃の障害があるためベンゼンの場合に比べると小さいと考えられる。このため、トルエンのNO₂によるニトロ化では、ベンゼンの場合に比べてジニトロ化生成物は相対的に少なくなると考えることにより、実験事実が説明できる。

4.3 化合物(8)の生成熱及び電子密度

化合物(8)の生成熱及び電子密度をTable 4に示す。 4.2で述べたようにこの中間体からはHNO₂が2分子 脱離すると考えられる。引き抜かれるH1, H2, H3およびH4の電子密度を比べると、電子密度の高 いH4はほとんど引き抜かれないと考えられる。また、 H2, H3に比べて僅かに電子密度の高いH1も,

NO₂

(7)

NO₂

Table 4 Heats of formation and net atomic charges of the compound (8)

Heat of formation / kcal mol-1				11.95		
	C1	- 0.321	O2	-0.557	O6	- 0. 555
	C2	- 0. 335	H1	+0.184	НЗ	+0.194
Net	C3	- 0.349	N2	+1.231	N4	+1.222
atomic	C4	- 0.253	O3	- 0.537	07	- 0. 531
charge	C5	- 0. 156	O4	- 0.565	O8	-0.571
	C6	- 0.078	H2	+0.194	H4	+0.142
	N1	+1.237	N3	+1.229	H5	+0.146
	01	-0.566	O5	-0.546	Н6	+0.141

H 2, H 3に比べて引き抜かれにくいと考えられるので、主生成物はH2, H3の脱離したロージニトロベンゼンであり、H1, H3の脱離したm-ジニトロベンゼンも若干生成するといえる(式7)。このことは実験結果にほぼ対応している。

5. まとめ

NO₂による芳香族=トロ化反応機構を解明するための一助として、ベンゼンおよびトルエンのジニトロ化物について、その生成挙動を調べるとともに分子軌道法を用いて電子密度の計算を行なった。その結果、ベンゼンのジニトロ化反応は、ベンゼンのNO₂による=トロ化反応の中間体であるσ-コンプレックスに・NO₂が付加し、さらに2分子の・NO₂が付加して生

成するテトラニトロテトラヒドロベンゼンを経て、この中間体から2分子のHNO₂が脱離してジニトロ化物が生成するという可能性が示唆された。

また、モノニトロ化反応は、ニトロ化反応の中間体であるσ-コンプレックスへの・NO2の付加と亜硝酸の脱離を経て起こっている可能性が示されたが、これが・NO2によるσ-コンプレックスからの水素引き抜きよりも優先して起こっているかどうかは明らかにされなかった。

文 献

- J. M. Bayona, K. E. Markides, M. L. Lee, Environ. Sci. Technol., 22, 1440 (1988)
- 2) 加地浩成,安全工学, 27,373 (1988)

- 中馬一郎,近藤宗平,武部 啓,「環境と人体Ⅱ」, (1983)、東大出版会
- 佐々木幹雄,阿久津好明,新井 充,田村昌三, 工業火薬、53.121(1992)
- 5) 阿久津好明, 佐々木幹雄, 斉藤利晃, 田村昌三, 吉田忠雄, 工築火薬, 51,61 (1990)
- G. L. Squadrito, F. R. Fronczek, D. F. Church,
 W. A. Pryor, J. Org. Chem., 54, 548 (1989)
- J. G. Hoggett, R. B. Moodie, J. R. Penton, K. Schofield, "Nitration and Aromatic Reactivity", (1971) Cambridge University Press
- 8) J. J. P. Stewart, J. Comp. Chem., 10, 209 (1989)

Mechanism for aromatic nitration with NO₂

by Mikio SASAKI*, Yoshiaki AKUTSU*, Mitsuru ARAI* and Masamitsu TAMURA*

In order to investigate the formation process for aromatic nitro compounds in the atmosphere and the aromatic nitration mechanism with NO_2 , we have examined the dinitro-isomer distributions in the nitration of benzene and toluene with NO_2 , and calculated heats of formation and atomic electron densities of the nitration intermediates. As the results, we suggest that the σ -complex intermediate should form mononitro compounds from the addition of NO_2 instead of hydrogen abstraction by NO_2 , and following elimination of nitrous acid. And we also suggested that this intermediate should lead to dinitro products from addition of 2 more molecular NO_2 and elimination of 2 molecular nitrous acid.

(*Department of Reaction Chemistry, Faculty of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan)