研究論文

1

フェントン反応および光フェントン反応による 2,4,6-トリニトロフェノールの湿式分解処理

來山斗志彦 *†,佐野洋一 **,永石俊幸 **

*九州産業大学大学院工学研究科 〒813-3503 福岡県福岡市東区松香台2-3-1 *Corresponding address: d4ts002@ip.kyusan-u.ac.jp

**九州産業大学工学部物質生命化学科 〒813-3503 福岡県福岡市東区松香台2-3-1

2006年7月25日 受付 2006年11月28日 受理

要旨

2,4,6-トリニトロフェノールの湿式分解処理を,鉄イオンとしてFe²⁺とFe³⁺を用いるFenton反応およびphoto-Fenton 反応を利用して行った。

他の湿式処理と比べて、Fenton反応およびphoto-Fenton反応で処理することによって短時間での分解処理と高濃度廃水 の処理が可能である。Fenton反応によってニトロ基はすべて硝酸イオンとなり脱離した。photo-Fenton反応では、さらに TOCも完全に除去され、二酸化炭素と水に分解できた。Fenton反応よりもphoto-Fenton反応の場合が処理効果は高く、分 解処理時間も短くなった。特に、photo-Fenton反応ではFe²⁺よりもFe³⁺を用いた場合が、処理速度および処理効果におい て優れていた。Fe²⁺を用いたときは処理後に沈殿物が認められるが、Fe³⁺ではほとんど認められないことから後処理を考 えればFe³⁺を使う方が良いと言える。

1. 緒言

2.4.6-トリニトロフェノール(以下, TNPと略記)は現在 起爆薬, 農薬, 発色試薬等の製造に使用されている ¹⁾。日 本では下瀬爆薬として第二次世界大戦終了まで主に爆薬と して使用されていた²⁾。TNPは水に可溶であり、金属を腐 食させやすく、水に不溶の有機系爆薬に比べ取扱いが困難 であり³⁾,爆発感度が高く爆発危険性の高い金属塩を容易 に生成する等の問題点もある⁴⁾。このTNPを含んだ遺棄 爆薬の解体に伴いTNPの処理が問題となっているが、昨 今まで実施されてきたTNPを含む火薬類の海洋投棄がロ ンドン条約等により禁止されることから、これに代わる処 理法が望まれている⁵⁾。また、TNPは芳香族ニトロ化合物 の一つであることから,毒性が高く⁶⁾,環境中に放出され た場合食物連鎖等による人体への影響が心配されており, アメリカや日本においても環境中への放出が規制されてい る物質である⁷⁾。以上のことよりTNPを含む廃水や芳香 族ニトロ化合物の廃薬について,安全かつ低コストの分解 処理法の検討が必要になっている⁸⁾。

現在, TNPを含む有機物含有廃液の処理法としては, 大 きくわけて乾式処理と湿式処理の2種類がある。乾式処理 は一度で大量の処理が可能という利点がある反面, 発火, 爆 発の危険性が高い等, 安全性について問題がある。TNPな どの芳香族ニトロ化合物の湿式処理については光触媒とし てTiO₂を用いた促進酸化法に代表される幾つかの報告が ある⁸⁾⁻¹⁷⁾。しかし,これらの報告では,従来の分解処理¹⁸⁾ と比較して分解処理に要する時間が短くなってはいるが, それでも分解処理に約60 minと時間がかかる。また,光触 媒による処理は光を照射するため,濃度の高い着色した廃 液には不向きである等の欠点がある。

有機物の分解処理には過酸化水素(以下, H₂O₂と略記) と鉄イオン(II)からなる分解試薬を使うFenton反応が利 用されてきた¹⁹⁾。Fenton反応はH₂O₂と鉄イオン(II)に よる反応で強力な酸化力を有するラジカルを生成する。 Fenton反応の初期反応は(1)および(2)式に示す通りで あり,反応により生成されるHO・とHO₂・が有機物の分 解に効果があると考えられている。また,(1)式の反応は (2)式に比べ比較的早い反応速度であることが知られて いる²⁰⁾。

 $\begin{array}{l} H_2O_2 + Fe^{2+} \rightarrow HO^{\cdot} + OH^- + Fe^{3+} \\ (\bar{\rho}c\bar{k}\bar{x}\bar{g}c\bar{z}\underline{3}\underline{3}; k = 53 \sim 76 \text{ mol } / \text{ dm}^3 \text{ s}^{-1}) \\ H_2O_2 + Fe^{3+} \rightarrow HO_2 \cdot + H^+ + Fe^{2+} \\ (\bar{\rho}c\bar{k}\bar{x}\bar{g}c\bar{z}\underline{3}; k = 1 \sim 2 \times 10^2 \text{ mol } / \text{ dm}^3 \text{ s}^{-1}) \end{array}$ (1)

芳香族ニトロ化合物の分解処理にFenton反応やphoto-Fenton反応を利用した報告も幾つかある²¹⁾⁻²⁵⁾。これらの 報告では、芳香族ニトロ化合物の濃度や処理試薬のH₂O₂ とFe²⁺の濃度を一定にして、芳香族ニトロ化合物間の処 理効果の比較が主である。例えば、Ming-Jer Liou等²¹⁾は7 種類の火薬類についてFenton反応による処理効果を比較 している。この結果は2,4-dinitrotolueneが一番大きく、 octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocineが処理しに くいことを明らかにしている。本報告では、Fenton試薬 のH₂O₂とFe²⁺の濃度の比率を変えたり、Fe²⁺の代わりに Fe³⁺を用いたときのTNPの処理について検討した。

2. 実験

2.1 試薬

TNPは和光純薬(株)市販試薬(純度98%), H₂O₂は和光 純薬(株)市販試薬(濃度30%), 2価の鉄イオン(以下, Fe²⁺ と略記)として和光純薬(株)製の硫酸鉄(II)・七水和物(純 度99%), 3価の鉄イオン(以下, Fe³⁺と略記)として半井 化学(株)製の硫酸鉄(II)(純度60%)をそれぞれ用いた。 また,水溶液を調製するときに使用した水は全て超純水 (Barnsteael 社製 E-pure)を使用した。

2.2 実験操作

任意の濃度のTNPモデル廃液を調製する。Fenton試薬と して H_2O_2 と Fe^{2+} もしくは Fe^{3+} の比率を任意に変えて調製 した。photo-Fenton反応は、Fig. 1に示す内部照射型の反応 管を用いて行った。光源として200 Wの高圧水銀ランプを 用いた。調製したFenton試薬を用い、常温でFenton反応も しくはphoto-Fenton反応によりTNPモデル廃液の分解処理 を行った。任意の時間でサンプリングを行い、得られたサン プルは0.45 μ m メンブレンフィルタ (ADVANTEC MIXED CELLULOSE ESTER)でろ過し各種の分析を行った。

2.3 分析法

実験で得られたサンプル中のTNPと脂肪酸類は日本分光 (株)製高速液体クロマトグラフ(型式875-UV・880-PU) (以下,HPLCと略記)を用い,亜硝酸イオン(以下,NO₂-と 略記)と硝酸イオン(以下,NO₃-と略記)は日本ダイオネク ス(株)製イオンクロマトグラフ(型式IC25・LC25)(以下,IC と略記)を用い,Table 1に示す分析条件で分析した。また, 全有機体炭素(以下,TOCと略記)の分析は(株)アナテック・ ヤナコ製全有機体炭素測定装置(型式TOC-800)を用いた。

Fig. 1 Apparatus for the photo-Fenton reaction of the internal irradiation type. [UV source ; 200 W high-pressure mercury lamp]

		Analysis condition			
	Column	Eluent	Flow rate	Oven temp	Detecter
TNP	Inertsil ODS-3V	100 mmol dm -3 NaClO ₄ /CH ₃ CN=70/30	1.0 mdm ³ min ⁻¹	40 °C	UV: 354 nm
Aliphatic acids	Shodex Rspak KC-811	0.1 %H ₃ PO ₄ aq	1.0 mdm ³ min ⁻¹	40 °C	UV: 210 nm
NO_2^- and NO_3^-	IonPac AS14A 4-mm	8.0 mol dm ⁻³ Na ₂ CO ₃ / 1.0 mmol dm ⁻³ NaHCO ₃	1.2 mdm ³ min ⁻¹	35 °C	Conductivity

Table 1 HPLC and IC analysis condition.

- Fig. 2 TNP degradation by the four methods at room temperature.
 - : Fenton reaction [Fe²⁺ = 1 mmol dm⁻³, H₂O₂ = 1.95 mmol dm⁻³],
 - $\blacksquare : \text{High-test hypochlorite},$
 - Ingli-test hypochiol
 TiO₂-photocatalyst,
 - \blacktriangle : EL-TiO₂-photocatalyst,

[Initial concentration: TNP = $0.436 \text{ mmol dm}^{-3}$]

3. 結果および考察

3.1 Fenton反応と他の湿式処理との比較

TNPの湿式分解処理としてFenton法, photo-Fenton法, TiO₂光触媒法およびさらし粉を用いる方法の4種類の処 理方法を行った結果の比較をFig. 2に示す。TNPの分解率 は荒巻等¹⁶⁾のさらし粉を用いた場合は分解処理開始後90 minで15%,120minで20%となり,分解処理速度は大きく ない。佐野等¹⁷⁾のTiO₂光触媒とTiO₂光触媒を用いた促進 酸化法を用いた場合ではTNPの分解率は90minで90%, 120minで98%以上となり,TNPの分解は認められるが, 分解処理に時間がかかることが報告されている。これに対 して,本実験のFe²⁺を用いたFenton反応の場合では分解処 理開始から15min以内と短い時間でTNPを完全に分解し ており,Fenton反応の有効性が示された。また,Fenton反応 を用いることで,処理に時間がかかるという湿式処理の 欠点が解消する可能性がある。

3.2 鉄イオンの違いと光照射の有無の比較

TNPの分解処理に用いるFenton試薬の鉄イオンをFe²⁺ とFe³⁺にした場合、また光照射の有無による処理効果の相 違をFig. 3に示す。この結果よりFenton反応による処理で は、鉄イオンとしてFe³⁺を用いた場合もFe²⁺を用いた場 合と同様にTNPの分解処理が可能であり、処理能力も同等 である。しかし、Fe²⁺を用いた場合に比べ分解処理に時間 がかかっている。これはFe²⁺を用いたときは(1)式で反応 が始まるが、Fe³⁺を用いたときは(1)式より(2)式の反応の 速度が小さいので、差がでると推測される。また、光を照 射するphoto-Fenton反応による分解処理を行うことで、ど ちらの鉄イオンを用いた光を照射した場合ではFe²⁺を用い た場合に比べ分解処理率が向上し、分解処理に要する時間

Fig. 3 TNP degradation by Fenton and photo-Fenton reactions.
●○: Fe²⁺, ■□: Fe³⁺;
●■: Fenton, ○□: photo-Fenton, [Initial concentration: TNP = 0.436 mmol dm⁻³, Fe²⁺ = Fe³⁺ = 1 mmol dm⁻³, H₂O₂ = 0.5 mmol dm⁻³]

についても Fe^{2+} を用いた場合と同程度であった。これは光 を照射する事により、光を照射しない通常のFenton反応と 同時進行で(3)式²⁴⁾の反応が進行して酸化力の強いHO・を 過剰に生成することと、生成された Fe^{2+} が(1)式によりモ デル廃液中の鉄イオンに比べ過剰に存在するH₂O₂と反応 する(1)式へ移行するという二つの原因により、光照射しな い Fe^{2+} 単独を用いた場合より分解率が増加し、 Fe^{3+} を用い たphoto-Fenton法の場合では分解率と分解速度が増加した と推測できる。

$$Fe^{3+} + H_2O + hv \rightarrow HO \cdot + H^+ + Fe^{2+}$$
(3)

鉄イオンとしてFe²⁺を用いた場合、反応後に懸濁物およ び沈殿物が生じ、Fe³⁺を用いた場合には、懸濁物および沈 殿物はほとんどなかった。すなわち、Fenton試薬に用いる 鉄イオンをFe²⁺からFe³⁺に変えて光を照射することで、分 解処理の向上および湿式処理の問題点である処理時間の短 縮をはかることができ、懸濁物と沈殿物の生成も軽減でき、 後処理も容易になることが示された。

3.3 TNPの分解処理に及ぼすFenton試薬中のH₂O₂と 鉄イオンの比率

Fenton試薬の鉄イオンと H_2O_2 の比率の分解率への影響 を調べるために,鉄イオン濃度を一定として H_2O_2 を変化 させた場合の過酸化水素の濃度とTNPの分解率の関係を Table 2に示す。TNPの初期濃度を0.436 mmol dm⁻³から 4.365 mmol dm⁻³へと高くしても, H_2O_2 濃度をそれに比例し て高くしていけばTNPの分解処理は可能であることを示 している。これは Fe^{2+} および Fe^{3+} ともに同様の結果であっ た。また,TNPの初期濃度が0.4365 mmol dm⁻³の場合では 鉄イオン濃度1 mmol dm⁻³に対し H_2O_2 濃度3 mmol dm⁻³の

H_2O_2 [mmol dm ⁻³]	4.365 mmol dm ⁻³	2.182 mmol dm ⁻³	1.091 mmol dm ⁻³	0.436 mmol dm ⁻³
0.5	0.214	0.232	0.398	0.721
1	0.230	0.456	0.497	0.915
3	0.483	0.533	0.880	1.000
5	0.620	0.696	0.979	1.000
10	0.772	0.968	0.988	1.000
15	0.993	0.999	0.999	1.000
20	0.999	1.000	0.995	1.000

Table 2The effect of H_2O_2 and initial TNP concentrations on the degradation of TNP by Fenton reaction.

(B) Fractional decomposition of TNP by Fe ³⁺				
H_2O_2 [mmol dm ⁻³]	4.365 mmol dm ⁻³	2.182 mmol dm ⁻³	1.091 mmol dm ⁻³	0.436 mmol dm ⁻³
0.5	0.071	0.123	0.347	0.652
1	0.148	0.275	0.555	0.880
3	0.300	0.633	0.949	0.992
5	0.348	0.865	1.000	1.000
10	0.403	0.966	0.999	1.000
15	0.458	0.994	0.999	1.000
20	0.489	1.000	0.995	1.000

(A) Fe^{2+} as an iron ion, (B) Fe^{3+} as an iron ion, [Reaction time: 60 min, Initial concentration: TNP = 0.436 ~ 4.36 mmol dm⁻³, $Fe^{2+} = Fe^{3+} = 1$ mmol dm⁻³]

Table 3 The effect of H_2O_2 concentration on the production of inorganic nitrogen compounds.

(4	A) Total nitro	gen and amou	unt of formed	NO ₂ ⁻ and NC	0 ₃ ⁻ by Fe ²⁺
27		1 1 27		1 1 27	T 1 1

H_2O_2 [mmol dm ⁻³]	NO ₂ ⁻ [mmol dm ⁻³]	NO_3^{-} [mmol dm ⁻³]	Total nitrogen [%]
1.000	0.406	0.153	42.7
3.000	0.000	1.132	86.5
5.000	0.000	1.309	100.0
10.000	0.000	1.279	97.7
15.000	0.000	1.309	100.0
20.000	0.000	1.309	100.0

(B) Total nitrogen and amount of formed NO₂⁻ and NO₃⁻ by Fe³⁺

H_2O_2 [mmol dm ⁻³]	NO ₂ ⁻ [mmol dm ⁻³]	NO ₃ ⁻ [mmol dm ⁻³]	Total nitrogen [%]
1	0.243	0.326	43.5
3	0.078	1.169	95.3
5	0.000	1.309	100.0
10	0.000	1.309	100.0
15	0.000	1.309	100.0
20	0.000	1.309	100.0

(A) Fe^{2+} as an iron ion, (B) Fe^{3+} as an iron ion, [Reaction time: 60 min, Initial concentration: TNP = 0.436 mmol dm⁻³, $Fe^{2+} = Fe^{3+} = 1$ mmol dm⁻³]

条件で, TNPの分解率は99%以上に達することがわかり, この場合のH₂O₂濃度はMing-Jer Liou等²¹⁾の報告よりも低 濃度であった。

TNPの分解処理の際のニトロ基の脱離について、同様の 条件下で実験した結果をTable 3に示す。Table 2の結果と 同様にH₂O₂濃度を増加することにより、ニトロ基の脱離率 が増加する結果が得られた。同時に鉄イオン濃度とH₂O₂ 濃度が共に1 mmol dm³の場合は亜硝酸イオンと硝酸イオ ンの生成が確認された。TNP中のニトロ基の42 %~44 % がNO₂⁻とNO₃⁻に変化している。H₂O₂濃度を上昇させて いくとほぼ完全にニトロ基はNO₂⁻とNO₃⁻に変化した。そ の場合の鉄イオンとH₂O₂濃度はそれぞれ1 mmol dm⁻³と5 mmol dm⁻³であり,前述のTNPの分解処理に比べH₂O₂必要 濃度が高くなっている。これは光を照射するphoto-Fenton 反応でも同様であった。以上のことから0.436 mmol dm⁻³の TNPを分解処理し,さらにニトロ基の完全脱離には鉄イオ ン1 mmol dm⁻³に対し5 mmol dm⁻³のH₂O₂が必要であるこ とがわかった。また,V. Kavitha等²⁴⁾の報告よりもH₂O₂濃

Fig. 4 Time history of TOC and TNP degraded by Fenton and photo-Fenton. \bullet : TNP, \blacksquare : TOC, [Initial concentration: TNP = 0.436 mmol dm⁻³, Fe²⁺ = Fe³⁺ = 1 mmol dm⁻³, H₂O₂ = 5 mmol dm⁻³]

度が低濃度で、ニトロ基の完全脱離が行える。以後は上記の濃度でFenton試薬を調製して実験を行った結果を示す。

3.4 TNPの分解処理過程

がより処理効果が高いといえる。

各条件下でFenton反応を用いてTNPを分解処理した際 の時間とTNP分解率およびTOC除去率の関係をFig.4(a) ~(d)に示す。Fig.4(a),(c)よりFenton反応ではTNPを 完全に分解処理することは可能であるが、TOCの除去に ついては鉄イオンとしてFe²⁺を用いた場合も、Fe³⁺を用い た場合もTOC除去率は10%~30%程度であり、かなりの 有機物が残っている。これに対し、Fig.4(b),(d)に示した 光を照射するphoto-Fenton反応を用いた分解処理では、 Fe²⁺を用いた場合(Fig.4(b))で、処理時間60minでTOC 除去率が98%、Fe³⁺を用いた場合(Fig.4(d))で処理時間 30minで100%のTOC除去率となった。このことから、通 常のFenton反応よりも光を照射するphoto-Fenton反応を 用いた場合の方がTOCの除去率がよく、Fe³⁺を用いる場合

各条件下でFenton反応を用いてTNPを分解処理した 際の時間とNO₂⁻とNO₃⁻の挙動をFig. 5 (a) ~ (d) に示 す。Fig. 5 (a) より, TNPをFe²⁺を用いたFenton反応で分 解処理した場合, 生成される窒素化合物はNO₂⁻とNO₃⁻ であった。通常のFenton反応で処理した場合, TNPの 分解に伴い, まずNO₂⁻が生成されており, そのNO₂⁻の 生成が極大となり, その後NO₂⁻の生成量が減少するに 伴いNO₃⁻の生成が始まっている。Fig. 5 (c) に示すよう に, Fe³⁺を用いたFenton反応で分解処理した場合, NO₂⁻ とNO₃⁻の生成開始時間が他の条件に比べ遅いのは,前述 したようにFe²⁺を用いたFenton反応である(1)式よりも Fe³⁺を用いた(2)式のFenton反応の方が遅い反応であり, (2)式で生成されたFe²⁺が(1)式により分解処理がなされ ていることが原因であると推測される。また,Fig. 5(b) よりphoto-Fenton反応を用いた分解処理ではFenton反応 の場合と同様の挙動を示すが,全体的に窒素化合物の生成 に要する時間が短くなっているようである。これはFig. 5 (c),(d)に示すように鉄イオンにFe³⁺を用いた場合も同 様である。また,処理時間120 minでのNO₂⁻とNO₃⁻の 生成量とTNPに含まれている窒素量がほぼ一致すること から,モデル廃液中の全有機体窒素はFenton反応および photo-Fenton反応により全て無機化されているといえる。

各条件下でFenton反応およびphoto-Fenton反応を用い てTNPを分解処理した際の時間と中間生成物である脂肪酸 類とTOC除去率の挙動をFig. $6(a) \sim (d)$ に示す。V. Kavitha 等 ²⁵⁾の報告によると、TNPは、Fenton反応により生成 されたHO・によりtrinitro-dihydroxy-benzene, dinitro- σ benzoquinoneを経た後にニトロ基の脱離や脂肪酸類の生成 が起きるとあるが、脂肪酸類の生成について詳しく検討さ れていない。Fig. $6(a) \sim (d)$ より、中間生成物である脂肪 酸類としてシュウ酸、L-酒石酸、マレイン酸、クエン酸、グ リコール酸およびコハク酸が確認できた。これらの中間生 成物の生成は時間的に、炭素数の多い化合物から小さい化 合物へと変化することが確認された。Fig. 6(a), (c)に示す ように、鉄イオンとしてFe²⁺およびFe³⁺を用いたFenton 反応によるTNPの処理では、TOCの除去率は100%では

Fig. 5 Concentration profiles of nitrite and nitrate ions formed during the degradation of TNP by Fenton and photo-Fenton reaction. ● : NO₂⁻, ■ : NO₃⁻, [Initial concentration: TNP = 0.436 mmol dm⁻³, Fe²⁺ = Fe³⁺ = 1 mmol dm⁻³, H₂O₂ = 5 mmol dm⁻³]

なく、処理時間40 min以降にHPLCでは脂肪酸類の生成が 認められないが,本分析カラムでは同定できない中間生成 物が生成されていると思われる。Fig. 6(b)のphoto-Fenton 反応では、分解処理120 minでTOCがほとんど除去でき、 それに伴い各脂肪酸類の生成が認められた。この生成され た脂肪酸類の炭素量とTOCの残存量はほぼ一致した。Fig. 6(d) Fe³⁺を用いた photo-Fenton 反応では本分析カラムで は同定できない中間生成物が生成されていると思われる が,分解処理40 min以降, TOCは完全に除去できた。また, Fig. 6 (a) ~ (d) より 光照射の 有無により TOC 除去率に 相異 がある。これはShyh-Fang Kang²⁴⁾ 等やV. Kavitha等²⁵⁾ および F. John Potter²⁶⁾ 等の報告より, Fenton反応では鉄 イオンが溶液中の有機物とFe³⁺-カルボキシル錯体を形成 し、HO・がそれ以上生成できなくなることによる。しかし、 photo-Fenton反応では光を照射することでFe³⁺-カルボキ シル錯体が分解し、Fe²⁺が再成されることよりHO·が生成 されるためTOC除去率が大きくなったと考えられる。

前述の結果よりTNPの分解反応過程をFig. 7のように 考えた。Fenton反応ではFenton試薬にFe²⁺を用いた場合 TNPはFenton反応により生成されたHO・により,TNPからtrinitro-dihydroxy-benzene, dinitro- σ -benzoquinoneを 経た後にベンゼン環の開裂などによりニトロ基の脱離が起 きていくとV. Kavitha等²⁵⁾は推測している。脱離したニ トロ基については,NO₂⁻やNO₃⁻に変化する。また,実験 結果よりTNPはdinitro- σ -benzoquinoneを経た後,各種脂 肪酸へと酸化されていくと推定できる。Fe³⁺を用いた場 合、TNPはFenton反応により生成されたHO2・による分解 とFe³⁺を用いたFenton反応で生成されたFe²⁺が、モデル 廃液中の鉄イオンに比べ過剰に存在するH2O2と反応する ことで生成されるHO・により分解される。その結果上記に 示したFe²⁺を用いたFenton反応と同様にTNPはNO2⁻や NO3⁻および各種脂肪酸へと酸化されると推定できる。

photo-Fenton反応においてはFenton反応と同時にTNP の分解が起きるとともに、(3)式に示すように光とH₂Oによ るFe³⁺からFe²⁺の光還元の際に生成されるHO・の影響に より分解処理に要する時間の短縮と処理効果の向上が起こ る。また、Fenton反応中に形成されたFe³⁺-カルボキシル 錯体が光により分解されFe²⁺が再成される。その結果、 photo-Fenton反応によるTNPの分解処理では、ニトロ基は 脱離されNO₂⁻やNO₃⁻になるとともに、Fenton反応では完 全に分解できなかった各種脂肪酸も酸化され二酸化炭素と 水になり、完全に無機化されると推定される。

4 結言

Fenton法及びphoto-Fenton法を用いたTNPの湿式分解 処理において次のような結論を得た。

 Fenton反応およびphoto-Fenton反応はさらし粉法, TiO₂光触媒法,TiO₂-EL光触媒法の3種類の湿式分解処 理と比べて,TNPの分解処理に有効であり,分解過程 での生成物はNO₂⁻,NO₃⁻,シュウ酸,L-酒石酸,マレ イン酸,クエン酸,グリコール酸およびコハク酸が生成 する。Fenton反応によるTNPの分解処理ではTOCは

Fig. 7 Mechanism of degradation reaction of TNP.

完全に除去できず、最終的にNO₃⁻と各種脂肪酸になった。photo-Fenton反応によるTNPの分解処理ではTOC は完全に除去でき、最終的にNO₃⁻、二酸化炭素と水と なり完全無機化ができた。

2) Fenton反応を用いる場合よりも、光を照射するphoto-Fenton反応を用いた場合、分解処理に要する時間の短 縮と処理効果の向上が起こることがわかった。これは 光を照射することにより(3)式の反応が起きているため と、Fenton反応中に形成されたFe³⁺-カルボキシル錯体 が光により分解されFe²⁺が再成されるため思われる。

3)鉄イオンとしてFe²⁺を用いた場合に懸濁物および沈殿 物が多かったが、Fe³⁺を用いた場合には懸濁物および 沈殿物は確認できなかった。この結果からFe³⁺を用い ると後処理も容易になると思われる。

References

- Environment Agency Environmental Chemical Workshops Edition, "Environmental Chemical Catalogs", p. 373 (1992), MARUZEN CO., LTD.
- The Industrial Explosives Society, "The Explosives Handbook", p. 22 (1987), KYORITSU SHUPPAN CO., LTD.
- Japan Explosives Society, "The Explosives Analysis Handbook", p. 214 (2002), MARUZEN CO., LTD.
- Rudolf Meyer, "Explosives", pp. 218-219 (1997), Verlog Chemie.
- 5) Y. Takishita, "EXPLOSION", 14, 145 (2004).
- T. Urbanski, "Chemistry and Technology of Explosives", Vol. 1, p. 231 (1964), A Pergamon Press Book.
- M. Grayson, "KIRK-OTHMER Concise Encyclopedia of Chemical Technology", pp. 1043-1044 (1985), MARUZEN CO., LTD.
- Y. Sano, K. Nishi, M. Matumoto, S. Yoshinaga and T. Nagaishi, Sci. Tech. Energetic Materials, 58, 47 (1997).
- 9) K. Tanaka, National Institute of Materials and Chemical Research, 8, pp. 49-64 (2001).
- 10) Y. Sano, T. Kitayama, M. Matumoto, and T. Nagaishi, Anzen Kogaku Kyokai, 45, pp. 34-39 (2006).
- 11) M. Sharig Vohra and K. Tanaka, Water Research, 36, pp. 59-64 (2002) .
- 12) K. Tanaka, W. Luesaiwong, and T. Hisanaga, Journal of Molecular Catalysis A: Chemical, 122, pp. 67-74 (1997).
- 13) D. C. Schmelling, K. A. Gray and P. V. Kamat, Environ. Sci. Technoi, 30, pp. 2547-2555 (1996).
- 14) I. Sung Woo, M. Whan Hwang, and J. Guk Cho, Sci. Tech. Energetic Materials, 57, 71 (1996).
- 15) T. Maeda, K. Kadokami, and H. l. Ogawa, Sci. Tech. Energetic Materials, 65, 94 (2004).

- 16) Y. Sano, T. Kitayama, and T. Nagaishi, Water Purification and Liquid Wastes Treatment, 47, pp. 177-181 (2006).
- 17) T. Aramaki, T. Kitayama, Y. Sano, and T. Nagaishi, Kyushu Sangyo Daigaku Kogakubu Kenkyu Hokoku, 42, pp. 139-142 (2005).
- 18) Japan Environmental Association for Industry, "Technology and Laws and Regulation of The Pollution Prevention [The Water Quality Edition]", pp. 167-173 (1995), DAICHI PRINTING CO., LTD.
- 19) Japan Environmental Association for Industry,
 "Technology and Laws and Regulation of The Pollution Prevention [The Water Quality Edition]", p. 243 (1995), DAICHI PRINTING CO., LTD.
- 20) M. Hincapie Perez, G. Penuela, M. I. Maldonad, O. Malato, P. Fernandez-Ibanez, I. Oller, W. Gernjak, and S. Malato, Applied Catalysis B: Environmental, 64, pp. 272-281 (2006).
- 21) M. Liou, M. Lu, and J. Chen, Water Research, 37, pp. 3172-3179 (2003) .
- 22) Z. M. Li, P. J. Shea, and S. D. Comfort, Chemosphere, 36, pp. 1849-1865 (1998).
- 23) J. Kiwi, C. Pulgarin, and P.Peringer, Applied Catalysis B: Environmental, 3, pp. 335-350 (1994).
- 24) S. Kang, T. Wang, and Ten-Han-Lin, J. ENVIRON. SCI. HEALTH, A34, p. 935-950 (1999).
- 25) V. Kavitha and K. Palanivelu, Journal of Photochemistry and Photobiology A: Chemistry, 170, pp. 83-95 (2005).
- 26) F. John Potter and J. A. Roth, Hazardous Waste & Hazardous Materials, 10, pp. 151-170 (1993).

Wet degradation processing of the 2,4,6-trinitrophenol by Fenton reaction and photo-Fenton reaction

Toshihiko Kitayama*[†], Youichi Sano**, and Toshiyuki Nagaishi**

The wet degradation of 2,4,6-trinitrophenol was studied by the Fenton and photo-Fenton reactions known as the Fenton reagent (a mixture of hydrogen peroxide and ferrousion (Fe^{2+})). As the new Fenton's reagent, ferric ion (Fe^{3+}) was also used. It was shown for both reactions that the nitro group in 2,4,6-trinitrophenol was mineralized to nitrate ions. The TOC is mineralized to carbon dioxide and water for almost the photo-Fenton reactions, but not completely for the Fenton reaction. When ferric ion is used instead of ferrous ion in the photo-Fenton reaction, the degradation of 2,4,6-trinitrophenol is promoted.

The photo-Fenton reaction using ferrous ion produced a solid residue or colloidal particles, but that using ferric ion did not produce any. This suggests that the new Fenton reagent can be used for the practical degradation of 2,4,6-trinitrophenol.

Keywords: 2,4,6-trinitrophenol, Fenton, Photo-Fenton, Wet degradation, Ferric ion

^{*}Graduate School of Engineering, Kyushu Sangyo University, 2-3-1 Matsukadai, Higashi-ku, Fukuoka-shi, Fukuoka 813-8503, JAPAN

[†]Corresponding address: d4ts002@ip.kyusan-u.ac.jp

**Department of Applied Chemistry and Biochemistry, Faculty of Engineering, Kyushu Sangyo University, 2-3-1 Matsukadai, Higashi-ku, Fukuoka-shi, Fukuoka 813-8503, JAPAN